
6.4 GENERAL PROCEDURE FOR SOLVING POISSON'S OR LAPLACE'S EQUATION

Forn = 1,

2 = cx sinh — or
b

221

For n = 5,

Hence,

sinh-ira

1 5ira
- = c5sinh — or c5 =

10 sinh
5ira

V(x,y) =

. irx . Try 5irx 5iry
2 sm — sinh — sin sinh

b b b b
+

sinh —
b

10 sinh
5ira

PRACTICE EXERCISE 6.6

In Example 6.5, suppose everything remains the same except that Vo is replaced by

Vo sin ——, 0 < x < b, y = a. Find V(JC, y).

Answer:
Vn sin sinh

sinh
7ra

EXAMPLE 6.7 Obtain the separated differential equations for potential distribution V(p, </>, z) in a charge-
free region.

Solution:

This example, like Example 6.5, further illustrates the method of separation of variables.
Since the region is free of charge, we need to solve Laplace's equation in cylindrical coor-
dinates; that is,

a / dv\ 1
P — I + —

d2V d2V

We let

P dp \ dp) p2 d(j>-

V(p, 4>, z) = R{P) Z(Z)

(6.7.1)

(6.7.2)
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222 H Electrostatic Boundary-Value Problems

where R, <P, and Z are, respectively, functions of p, (j>, and z. Substituting eq. (6.7.2) into

eq. (6.7.1) gives

*?
p dp\dp

We divide through by R<PZ to obtain

p2 d<t>2 T = 0

\_±(pdR\ 1 d2t>
pR dp\ dp ) P

2<P d<t>

dz

1 d2Z

Z dz2

(6.7.3)

(6.7.4)

The right-hand side of this equation is solely a function of z whereas the left-hand side
does not depend on z. For the two sides to be equal, they must be constant; that is,

J_d_(pdR\ +J_d*±
pR dp\dp) p

2(p dct>2

1 d2Z

Z dz2
= - A 2 (6.7.5)

where -X2 is a separation constant. Equation (6.7.5) can be separated into two parts:

1 d2Z

Zdz
_ 2
— A

or

and

Z" - X2Z = 0

Rdp\ dp

Equation (6.7.8) can be written as

^£R_ p^dR

R dp2 R dp
2_ 1 d24>

where fx2 is another separation constant. Equation (6.7.9) is separated as

<P" = fo = o

and

p2R" + pR' + (p2X2 - VL2)R = 0

(6.7.6)

(6.7.7)

(6.7.8)

(6.7.9)

(6.7.10)

(6.7.11)

Equations (6.7.7), (6.7.10), and (6.7.11) are the required separated differential equations.
Equation (6.7.7) has a solution similar to the solution obtained in Case 2 of Example 6.5;
that is,

Z(z) = cx cosh \z + c2 sinh Xz (6.7.12)
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6.5 RESISTANCE AND CAPACITANCE 223

The solution to eq. (6.7.10) is similar to the solution obtained in Case 3 of Example 6.5;
that is,

<P(4>) = c 3 co s fi<t> + c4 s in (6.7.13)

Equation (6.7.11) is known as the Bessel differential equation and its solution is beyond
the scope of this text.

PRACTICE EXERCISE 6.7

Repeat Example 6.7 for V(r, 6, (f>).

Answer: If V(r, 0, <t>) = R(r) F(6) <£(0), <P" + \2<P = 0, R" + -R' - ^R

F + cot 6 F' + (ju2 - X2 cosec2 0) F = 0.

= 0,

6.5 RESISTANCE AND CAPACITANCE

In Section 5.4 the concept of resistance was covered and we derived eq. (5.16) for finding
the resistance of a conductor of uniform cross section. If the cross section of the conductor
is not uniform, eq. (5.16) becomes invalid and the resistance is obtained from eq. (5.17):

= V = jE-dl
I §aE-dS

(6.16)

The problem of finding the resistance of a conductor of nonuniform cross section can be
treated as a boundary-value problem. Using eq. (6.16), the resistance R (or conductance
G = l/R) of a given conducting material can be found by following these steps:

1. Choose a suitable coordinate system.
2. Assume Vo as the potential difference between conductor terminals.
3. Solve Laplace's equation V2V to obtain V. Then determine E from E =

/ f r o m / = / CTE- dS.
4. Finally, obtain R as VJI.

- VV and

In essence, we assume Vo, find /, and determine R = VJI. Alternatively, it is possible
to assume current /o, find the corresponding potential difference V, and determine R from
R = V/Io. As will be discussed shortly, the capacitance of a capacitor is obtained using a
similar technique.

For a complete solution of Laplace's equation in cylindrical or spherical coordinates, see, for
example, D. T. Paris and F. K. Hurd, Basic Electromagnetic Theory. New York: McGraw-Hill, 1969,
pp. 150-159.
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224 U Electrostatic Boundary-Value Problems

Generally speaking, to have a capacitor we must have two (or more) conductors car-
rying equal but opposite charges. This implies that all the flux lines leaving one conductor
must necessarily terminate at the surface of the other conductor. The conductors are some-
times referred to as the plates of the capacitor. The plates may be separated by free space
or a dielectric.

Consider the two-conductor capacitor of Figure 6.12. The conductors are maintained
at a potential difference V given by

V = V, - V? = - d\ (6.17)

where E is the electric field existing between the conductors and conductor 1 is assumed to
carry a positive charge. (Note that the E field is always normal to the conducting surfaces.)

We define the capacitance C of the capacitor as the ratio of the magnitude of the
charge on one of the plates to the potential difference between them; that is,

(6.18)

The negative sign before V = — / E • d\ has been dropped because we are interested in the
absolute value of V. The capacitance C is a physical property of the capacitor and in mea-
sured in farads (F). Using eq. (6.18), C can be obtained for any given two-conductor ca-
pacitance by following either of these methods:

1. Assuming Q and determining V in terms of Q (involving Gauss's law)
2. Assuming Vand determining Q in terms of V(involving solving Laplace's equation)

We shall use the former method here, and the latter method will be illustrated in Examples
6.10 and 6.11. The former method involves taking the following steps:

1. Choose a suitable coordinate system.
2. Let the two conducting plates carry charges + Q and — Q.

Figure 6.12 A two-conductor ca-
pacitor.
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6.5 RESISTANCE AND CAPACITANCE 225

3. Determine E using Coulomb's or Gauss's law and find Vfrom V = — J E • d\. The
negative sign may be ignored in this case because we are interested in the absolute
value of V.

4. Finally, obtain C from C = Q/V.

We will now apply this mathematically attractive procedure to determine the capaci-
tance of some important two-conductor configurations.

A. Parallel-Plate Capacitor
Consider the parallel-plate capacitor of Figure 6.13(a). Suppose that each of the plates has
an area S and they are separated by a distance d. We assume that plates 1 and 2, respec-
tively, carry charges +Q and —Q uniformly distributed on them so that

Ps ~
Q (6.19)

dielectric e plate area S

1 —. . .

Figure 6.13 (a) Parallel-plate capacitor,
(b) fringing effect due to a parallel-plate
capacitor.

(a)

(b)
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226 Electrostatic Boundary-Value Problems

An ideal parallel-plate capacitor is one in which the plate separation d is very small com-
pared with the dimensions of the plate. Assuming such an ideal case, the fringing field at
the edge of the plates, as illustrated in Figure 6.13(b), can be ignored so that the field
between them is considered uniform. If the space between the plates is filled with a homo-
geneous dielectric with permittivity e and we ignore flux fringing at the edges of the plates,
from eq. (4.27), D = -psax or

(6.20)

ES

Hence

(6.21)

and thus for a parallel-plate capacitor

(6.22)

This formula offers a means of measuring the dielectric constant er of a given dielectric.
By measuring the capacitance C of a parallel-plate capacitor with the space between the
plates filled with the dielectric and the capacitance Co with air between the plates, we find
er from

_ c_
Er~ co

Using eq. (4.96), it can be shown that the energy stored in a capacitor is given by

(6.23)

(6.24)

To verify this for a parallel-plate capacitor, we substitute eq. (6.20) into eq. (4.96) and
obtain

1
rE — — i E - r — :

2 J e
2S

dv =
2E2S2

Q2 (d\ Q2 1
= — [ — ) = — = -QV

2 \eSj 2C 2^

as expected.
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6.5 RESISTANCE AND CAPACITANCE 227

B. Coaxial Capacitor

This is essentially a coaxial cable or coaxial cylindrical capacitor. Consider length L of two
coaxial conductors of inner radius a and outer radius b (b > a) as shown in Figure 6.14.
Let the space between the conductors be filled with a homogeneous dielectric with permit-
tivity s. We assume that conductors 1 and 2, respectively, carry +Q and -Q uniformly dis-
tributed on them. By applying Gauss's law to an arbitrary Gaussian cylindrical surface of
radius p (a < p < b), we obtain

Q = s <j> E • dS = eEp2irpL

Hence:

Neglecting flux fringing at the cylinder ends,

L 2irspL
ap\-dp ap

Q , b
•In —

2-KEL a

Thus the capacitance of a coaxial cylinder is given by

(6.25)

(6.26)

(6.27a)

(6.27b)

(6.28)

C. Spherical Capacitor

This is the case of two concentric spherical conductors. Consider the inner sphere of radius
a and outer sphere of radius b{b> a) separated by a dielectric medium with permittivity
e as shown in Figure 6.15. We assume charges +Q and -Q on the inner and outer spheres

dielectric

Figure 6.14 Coaxial capacitor.
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228 • Electrostatic Boundary-Value Problems

Figure 6.15 Spherical capacitor.

dielectric e

respectively. By applying Gauss's law to an arbitrary Gaussian spherical surface of radius
r(a<r<b),

that is,

Q = e *E • dS = sEr4irrz

E =
4-irer2

(6.29)

(6.30)

The potential difference between the conductors is

V= - E
h

Q

• drar

' - 4ire [a b

Thus the capacitance of the spherical capacitor is

(6.31)

(6.32)

By letting b —» t», C = 47rsa, which is the capacitance of a spherical capacitor whose
outer plate is infinitely large. Such is the case of a spherical conductor at a large distance
from other conducting bodies—the isolated sphere. Even an irregularly shaped object of
about the same size as the sphere will have nearly the same capacitance. This fact is useful
in estimating the stray capacitance of an isolated body or piece of equipment.

Recall from network theory that if two capacitors with capacitance C] and C2 are in series
(i.e., they have the same charge on them) as shown in Figure 6.16(a), the total capacitance is

C2

or

C = (6.33)
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6.5 RESISTANCE AND CAPACITANCE 229

Figure 6.16 Capacitors in (a) series, and
(b) parallel.

(a) (b)

If the capacitors arc in parallel (i.e., they have the same voltage across their plates) as
shown in Figure 6.16(b), the total capacitance is

C = C2 (6.34)

Let us reconsider the expressions for finding the resistance R and the capacitance C of
an electrical system. The expressions were given in eqs. (6.16) and (6.18):

V =

/

= Q=

VV fE-dl

(6.16)

(6.18)

The product of these expressions yields

(6.35)

which is the relaxation time Tr of the medium separating the conductors. It should be re-
marked that eq. (6.35) is valid only when the medium is homogeneous; this is easily in-
ferred from eqs. (6.16) and (6.18). Assuming homogeneous media, the resistance of
various capacitors mentioned earlier can be readily obtained using eq. (6.35). The follow-
ing examples are provided to illustrate this idea.

For a parallel-plate capacitor,

Q =
sS

R =
oS

(6.36)

For a cylindrical capacitor,

c = ^k R =
b ' 2-KOL

In —

(6.37)
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230 Hi Electrostatic Boundary-Value Problems

• For a spherical capacitor,

Q =
4-rre

1

b

R =
4ira

And finally for an isolated spherical conductor,

C = Airsa, R =
4iroa

(6.38)

(6.39)

It should be noted that the resistance R in each of eqs. (6.35) to (6.39) is not the resistance
of the capacitor plate but the leakage resistance between the plates; therefore, a in those
equations is the conductivity of the dielectric medium separating the plates.

A metal bar of conductivity a is bent to form a flat 90° sector of inner radius a, outer radius
b, and thickness t as shown in Figure 6.17. Show that (a) the resistance of the bar between
the vertical curved surfaces at p = a and p = b is

R =
oitt

and (b) the resistance between the two horizontal surfaces at z = 0 and z = t is

At
R' =

oir(b2 - a2)

Solution:
(a) Between the vertical curved ends located at p = a and p = b, the bar has a nonuni-
form cross section and hence eq. (5.16) does not apply. We have to use eq. (6.16). Let a po-
tential difference Vo be maintained between the curved surfaces at p = a and p = b so that

Figure 6.17 Metal bar of Exam-
ple 6.8.

r
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6.5 RESISTANCE AND CAPACITANCE 231

V(p = a) = 0 and V(p = b) = Vo. We solve for V in Laplace's equation \2V = 0 in cylin-
drical coordinates. Since V = V(p),

2 _\_d_( ^V'

P dp \ dp

As p = 0 is excluded, upon multiplying by p and integrating once, this becomes

o--A

or

dV _ A

; dp P ;

Integrating once again yields ?

V = Alnp + S

where A and 5 are constants of integration to be determined from the boundary conditions.

V(p = a) = 0 -> 0 = A In a + B or 5 = -A In a

V(p = b) = Vo -^ Vo = A In b + B = A In b - A In a = A In - or A = —
a b

l n -

Hence ,

Thus

= A In p - A In a = A I n - = — l n -
a b a
• l n -

a

dp

J = aE, dS = -p

fTT/2

/ = J • dS =
•*=° J -

p In —
. a

dzpd(j> = - — -

In - In -
a a

oirt

as required.
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232 Electrostatic Boundary-Value Problems

(b) Let Vo be the potential difference between the two horizontal surfaces so that
V(z = 0) = 0 and V(z = i) = Vo. V = V(z), so Laplace's equation V2V = 0 becomes

dz2 = o

Integrating twice gives

: V = Az + B

We apply the boundary conditions to determine A and B:

V(z = 0) = 0 ^ 0 = 0 + 5 or B = 0

Hence,

V{z = t) = Vo->Vo=At or A =

V =

/ = J • dS =

Voa TT p

t ' 2 2

Thus

J = aE = az, dS = -p d<j> dp a.

p dcp dp

VOGIT (b2 - a2)

At

At

i

I o-K{b2 - a2)

Alternatively, for this case, the cross section of the bar is uniform between the hori-
zontal surfaces at z.= 0 and z = t and eq. (5.16) holds. Hence,

a~(b- a1)

At

- a2)

as required.
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6.5 RESISTANCE AND CAPACITANCE 233

n PRACTICE EXERCISE 6.8 »»SliIS§«8

A disc of thickness t has radius b and a central hole of radius a. Taking the conduc-
;; tivity of the disc as a, find the resistance between
is

I (a) The hole and the rim of the disc
ft
|V (b) The two flat sides of the disc

A coaxial cable contains an insulating material of conductivity a. If the radius of the central
wire is a and that of the sheath is b, show that the conductance of the cable per unit length
is (see eq. (6.37))

- In b/a
: Answer: (a) , (b)

2-Kta oir(b - a )

1= J • dS =

2*LoVo

In b/a

The resistance per unit length is

and the conductance per unit length is

Consider length L of the coaxial cable as shown in Figure 6.14. Let Vo be the potential dif-
ference between the inner and outer conductors so that V(p = a) = 0 and V(p — b) = Vo

V and E can be found just as in part (a) of the last example. Hence:

-aV
J = aE = ° a p , dS = -pd<f> dz a p •

:: pmb/a ; • •

p dz. d(j>
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234 U Electrostatic Boundary-Value Problems

PRACTICE EXERCISE 6.9

A coaxial cable contains an insulating material of conductivity ax in its upper half
and another material of conductivity a2 in its lower half (similar to the situation in
Figure 6.19b). If the radius of the central wire is a and that of the sheath is b, show
that the leakage resistance of length £ of the cable is

Answer: Proof.

EXAMPLE 6.10
Conducting spherical shells with radii a = 10 cm and b = 30 cm are maintained at a po-
tential difference of 100 V such that V(r = b) = 0 and V(r = a) = 100 V. Determine V
and E in the region between the shells. If sr = 2.5 in the region, determine the total charge
induced on the shells and the capacitance of the capacitor.

Solution: I

Consider the spherical shells shown in Figure 6.18. V depends only on r and hence
Laplace's equation becomes

r2 dry dr

Since r =fc 0 in the region of interest, we multiply through by r2 to obtain

dr dr

Integrating once gives

dr

Figure 6.18 Potential V(r) due to conducting spherical shells.
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6.5 RESISTANCE AND CAPACITANCE 235

or

Integrating again gives

dV _ A
dr r2

V= + B
r

As usual, constants A and B are determined from the boundarv conditions.

When r = b, V = 0 -^ 0 = + B or B = -
b b

Hence

V = A
1 1
b ~ r

Also when r = a, V = Vo -> Vo = A
1 1
b ~ a

or

A =
1 1
b a

Thus

v=vn
r ~ b

1 1
a b

1 1
r - |

ar

= eE • dS =
= 0 J0 =

47TEoS rVo

L-2-^r r2 sin 5 ̂  dd

a b

a b
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236 B Electrostatic Boundary-Value Problems

The capacitance is easily determined as

Q =

Vo ̂ _ J _
a b

which is the same as we obtained in eq. (6.32); there in Section 6.5, we assumed Q and
found the corresponding Vo, but here we assumed Vo and found the corresponding Q to de-
termine C. Substituting a = 0.1 m, b = 0.3 m, Vo = 100 V yields

V = 100
10 - 10/3 1 5 | r 3

Check: V2V = 0, V(r = 0.3 m) = 0, V(r = 0.1 m) = 100.

E =
100

r2 [10 - 10/3]
ar = —^ ar V/m

Q = ±4TT
10"9 (2.5) • (100)

36?r 10 - 10/3 ' ' '•
= ±4.167 nC

The positive charge is induced on the inner shell; the negative charge is induced on the
outer shell. Also

C =
\Q\ _ 4.167 X 10"

100
= 41.67 pF

PRACTICE EXERCISE 6.10

If Figure 6.19 represents the cross sections of two spherical capacitors, determine
their capacitances. Let a = 1 mm, b = 3 mm, c = 2 mm, srl = 2.5. and er2 = 3.5.

Answer: (a) 0.53 pF, (b) 0.5 pF

Figure 6.19 For Practice Exer-
cises 6.9, 6.10, and 6.12.

(a) (b)
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6.5 RESISTANCE AND CAPACITANCE 237

fcXA.V In Section 6.5, it was mentioned that the capacitance C = Q/V of a capacitor can be found
by either assuming Q and finding V or by assuming V and finding Q. The former approach
was used in Section 6.5 while we have used the latter method in the last example. Using
the latter method, derive eq. (6.22).

Solution:

Assume that the parallel plates in Figure 6.13 are maintained at a potential difference Vo so
that V(x = 0) and V(x = d) = Vo. This necessitates solving a one-dimensional boundary-
value problem; that is, we solve Laplace's equation

dx'

Integrating twice gives

where A and B are integration constants to be determined from the boundary conditions. At
x = 0, V = 0 -> 0 = 0 + B, or B = 0, and at x = d, V = Vo -> Vo = Ad + 0 or

Hence

Notice that this solution satisfies Laplace's equation and the boundary conditions.
We have assumed the potential difference between the plates to be Vo. Our goal is to

find the charge Q on either plate so that we can eventually find the capacitance C = Q/Vo.
The charge on either plate is

Q = As dS

But ps — D • an = eE • an, where

E = -VV= -~ax= -t
dx

On the lower plates, an = ax, so

Ps =
eVn

On the upper plates, an = -ax, so

d

and Q = —
d

sVo sVoS
Ps = " V and Q = —T~
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238 S Electrostatic Boundary-Value Problems

As expected, Q is equal but opposite on each plate. Thus

Vn d

which is in agreement with eq. (6.22).

N

5 PRACTICE EXERCISE 6.11
H.

§/; Derive the formula for the capacitance C = Q/Vo of a cylindrical capacitor in eq.
| (6.28) by assuming Vo and finding (?.

EXAMPLE <».12 Determine the capacitance of each of the capacitors in Figure 6.20. Take erl = 4, er2 = 6,
d = 5 mm, 51 = 30 cm2.

Solution:

(a) Since D and E are normal to the dielectric interface, the capacitor in Figure 6.20(a) can
be treated as consisting of two capacitors Cx and C2 in series as in Figure 6.16(a).

P p V Op p V Op p C

*~ d/2 ~ d ' 2 ~ d

The total capacitor C is given by

C =
CXC2 2EoS (erl£r2)

= 2

+ C2 d erl + er2

1 0 " 9 3 0 X 1 0 " 4 4 X 6

36TT 5 X 10"3

C = 25.46 pF
10

w/2 w/2

(b)

Figure 6.20 For Example 6.12.

(6.12.1)
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6.5 RESISTANCE AND CAPACITANCE 239

(b) In this case, D and E are parallel to the dielectric interface. We may treat the capacitor
as consisting of two capacitors Cx and C2 in parallel (the same voltage across C\ and C2) as
in Figure 6.16(b).

eos r l5/2 eoerlS _, sosr2S

Id ' Id

The total capacitance is

10"9 30 X 10"

~ 36TT 2 • (5 X 10~3)

C = 26.53 pF

er2)

10 (6.12.2)

Notice that when srl = er2 = er, eqs. (6.12.1) and (6.12.2) agree with eq. (6.22) as ex-
pected.

PRACTICE EXERCISE 6.12

Determine the capacitance of 10 m length of the cylindrical capacitors shown in
Figure 6.19. Take a = 1 mm, b = 3 mm, c = 2 mm, erl = 2.5, and er2 — 3.5.

Answer: (a) 1.41 nF, (b) 1.52 nF.

A cylindrical capacitor has radii a = 1 cm and b = 2.5 cm. If the space between the plates
is filled with an inhomogeneous dielectric with sr = (10 + p)/p, where p is in centimeters,
find the capacitance per meter of the capacitor.

Solution:

The procedure is the same as that taken in Section 6.5 except that eq. (6.27a) now becomes

V = -
Q

2ireQsrpL
dp= -

Q
2iTBoL

dp

10 + p

-Q r dp = -Q
2ire0L )b 10 + p 2irsoL

Q , 10 + b
- m

In (10 + p)

2irsnL 10 +• a
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240 Electrostatic Boundary-Value Problems

Thus the capacitance per meter is (L = 1 m)

„ Q
10

C = 434.6 pF/m

= 2TT
10- 9

36TT 12.5

A spherical capacitor with a = 1.5 cm, 6 = 4cm has an inhomogeneous dielectric
jjj|ofe = lOSo/r. Calculate the capacitance of the capacitor.

K: Answer: 1.13 nF.

6.6 METHOD OF IMAGES

The method of images, introduced by Lord Kelvin in 1848, is commonly used to determine
V, E, D, and ps due to charges in the presence of conductors. By this method, we avoid
solving Poisson's or Laplace's equation but rather utilize the fact that a conducting surface
is an equipotential. Although the method does not apply to all electrostatic problems, it can
reduce a formidable problem to a simple one.

lu-orx stales ilmi ti given charge ctinlijnirmion aho\e an inlinik'
ciin-i plane max be replaced bx the charge conliguialioti

surface in place of 11 ' ' ' ,ie.

Typical examples of point, line, and volume charge configurations are portrayed in Figure
6.21(a), and their corresponding image configurations are in Figure 6.21(b).

Equipotential surface V = 0

-Q*

(a)

Figure 6.21 Image system: (a) charge configurations above a perfectly conducting plane;
(b) image configuration with the conducting plane replaced by equipotential surface.
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6.6 METHOD OF IMAGES 241

In applying the image method, two conditions must always be satisfied:

1. The image charge(s) must be located in the conducting region.
2. The image charge(s) must be located such that on the conducting surface(s) the po-

tential is zero or constant.

The first condition is necessary to satisfy Poisson's equation, and the second condition
ensures that the boundary conditions are satisfied. Let us now apply the image theory to
two specific problems.

A. A Point Charge Above a Grounded Conducting Plane
Consider a point charge Q placed at a distance h from a perfect conducting plane of infinite
extent as in Figure 6.22(a). The image configuration is in Figure 6.22(b). The electric field
at point P(x, y, z) is given by

E = E+ + E

The distance vectors r t and r2 are given by

r, = (x, y, z) - (0, 0, h) = (x, j , z - h)

. • ' . . r2 = (x, y> z) - (0, 0, -h) = (x, j , z + h)

so eq. (6.41) becomes

= J2_ f xax + yay + (z - fe)az _ xax + yay + (z + fe)a
:2 + y2 + (z - h)2f2 [x2 + y2 + ( hff12

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

v= o
/

P(x,y,z)

(a)

Figure 6.22 (a) Point charge and grounded conducting plane, (b) image configuration and
field lines.
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Electrostatic Boundary-Value Problems

It should be noted that when z = 0, E has only the z-component, confirming that E is
normal to the conducting surface.

The potential at P is easily obtained from eq. (6.41) or (6.44) using V = -jE-dl.
Thus

v=v+
Q + ~Q

v =

4ireor1 4irsor2

Q

(6.45)

:o {[x2 + y2 + (z ~ hff2 [x2 + y2 + (z + h)2f

for z a 0 and V = 0 for z < 0 . Note that V(z = 0) = 0.
The surface charge density of the induced charge can also be obtained from eq. (6.44) as

ps - Dn - eJLn

-Qh
(6.46)

h2f2

The total induced charge on the conducting plane is

Qi= PsdS =
-Qhdxdy

By changing variables, p2 = x2 + y2, dx dy = p dp d4>-

Qi = ~ n3/2

(6.47)

(6.48)

Integrating over <j> gives 2ir, and letting p dp = —d (p2), we obtain

,2,1/2
(6.49)

= -Q

as expected, because all flux lines terminating on the conductor would have terminated on
the image charge if the conductor were absent.

B. A Line Charge above a Grounded Conducting Plane

Consider an infinite charge with density pL C/m located at a distance h from the grounded
conducting plane z = 0. The same image system of Figure 6.22(b) applies to the line
charge except that Q is replaced by pL. The infinite line charge pL may be assumed to be at
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6.6 METHOD OF IMAGES "t 243

x = 0, z = h and the image — pL at x = 0, z = ~A so that the two are parallel to the y-axis.
The electric field at point P is given (from eq. 4.21) by .

(6.50)

(6.51)

(6.52)

(6.53)

(6.54)

The distance vectors p t and

E =

p2 are

E + +

PL

2irsop

given

E_

-PL

Z " 1 ' 27T£0p2

by

p2 = (x, y, z) - (0, y, -h) = (x, 0, z + h)

so eq. (6.51) becomes

E =
pL \xax + (z - h)az xax

27T£O L X2 + (Z - X2 + (z +

Again, notice that when z = 0, E has only the z-component, confirming that E is normal to
the conducting surface.

The potential at P is obtained from eq. (6.51) or (6.54) using V = -jE-dl. Thus

V = V+ + V-

= PL 1
2iT£0

PL , Pi- In —

ft lnp2 (6.55)

. "• • . . ' . ' 2 T T E O P 2

Substituting px = \pi\ and p2 = \p2\ in eqs. (6.52) and (6.53) into eq. (6.55) gives

1/2

(6.56)

for z > 0 and V = 0 for z < 0 . Note that V(z = 0) = 0.
The surface charge induced on the conducting plane is given by

Ps = Dn = soEz

The induced charge per length on the conducting plane is

pLh f°° dx
Pi= psdx = —

, x2 + h2

(6.57)

(6.58)

By letting x = h tan a, eq. (6.58) becomes

\
Pi =

pLh r da
(6.59)

as expected.
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244 Electrostatic Boundary-Value Problems

EXAMPLE 6.14 A point charge Q is located at point (a, 0, b) between two semiinfinite conducting planes
intersecting at right angles as in Figure 6.23. Determine the potential at point P(x, y, z) and
the force on Q.

Solution:

The image configuration is shown in Figure 6.24. Three image charges are necessary to
satisfy the conditions in Section 6.6. From Figure 6.24(a), the potential at point P(x, y, z) is
the superposition of the potentials at P due to the four point charges; that is,

V = Q ri
r2 >4

where

r4 = [{x-af

From Figure 6.24(b), the net force on Q

F = F, + F , + F3

n = [(x - a)2 +y2 + (z- b)2]1'2

r2 = [(x + a)2 + y 2 + (z- bf]yl

2 + (z + bf]m

2 + (z + bf]m

r3 = [(x + a)2

F2

Q2 Q2

4wso(2bf

Q2

47reo(2a)2 +

^3/2

Q2(2aax + 2baz)

4Treo[(2a)2 + {Ibfr
2-, 3/2

{a2 + b2),2-v3/2 , 2 I az

The electric field due to this system can be determined similarly and the charge induced on
the planes can also be found.

Figure 6.23 Point charge between two semiinfinite
conducting planes.

o
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6.6 METHOD OF IMAGES 245

" = o ,, »P(x,y,z)

(a) (b)

Figure 6.24 Determining (a) the potential at P, and (b) the force on charge Q.

In general, when the method of images is used for a system consisting of a point
charge between two semiinfinite conducting planes inclined at an angle (/> (in degrees), the
number of images is given by

because the charge and its images all lie on a circle. For example, when <j> = 180°, N = 1
as in the case of Figure 6.22; for 0 = 90°, N = 3 as in the case of Figure 6.23; and for
(j> = 60°, we expect AT = 5 as shown in Figure 6.25.

-Q Figure 6.25 Point charge between two semiinfinite
conducting walls inclined at <j> = 60° to each.

-Q -Q

+Q
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246 Electrostatic Boundary-Value Problems

PRACTICE EXERCISE 6.14

If the point charge Q — 10 nC in Figure 6.25 is 10 cm away from point O and along
the line bisecting <t> = 60°, find the magnitude of the force on Q due to the charge
induced on the conducting walls.

A n s w e r : 6 0 . 5 3 / i N . . n ,; :;,.,... ---;•;::• :-iy:;:.-.;••->;;v,.ia:.s>:i,,SESs«i:

1. Boundary-value problems are those in which the potentials at the boundaries of a region
are specified and we are to determine the potential field within the region. They are
solved using Poisson's equation if pv =£ 0 or Laplace's equation if pv = 0.

2. In a nonhomogeneous region, Poisson's equation is

V • e VV = -pv

For a homogeneous region, e is independent of space variables. Poisson'
becomes . ;

's equation

V2V = - ^

In a charge-free region (pv = 0), Poisson's equation becomes Laplace's equation;
that is,

v2y = o

3. We solve the differential equation resulting from Poisson's or Laplace's equation by in-
tegrating twice if V depends on one variable or by the method of separation of variables
if Vis a function of more than one variable. We then apply the prescribed boundary con-
ditions to obtain a unique solution.

4. The uniqueness theorem states that if V satisfies Poisson's or Laplace's equation and the
prescribed boundary condition, V is the only possible solution for that given problem.
This enables us to find the solution to a given problem via any expedient means because
we are assured of one, and only one, solution.

5. The problem of finding the resistance R of an object or the capacitance C of a capacitor
may be treated as a boundary-value problem. To determine R, we assume a potential
difference Vo between the ends of the object, solve Laplace's equation, find
/ = / aE • dS, and obtain R = VJI. Similarly, to determine C, we assume a potential
difference of Vo between the plates of the capacitor, solve Laplace's equation, find
Q = / eE • dS, and obtain C = Q/Vo.

6. A boundary-value problem involving an infinite conducting plane or wedge may be
solved using the method of images. This basically entails replacing the charge configu-
ration by itself, its image, and an equipotential surface in place of the conducting plane.
Thus the original problem is replaced by "an image problem," which is solved using
techniques covered in Chapters 4 and 5. -, • •
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REVIEW QUESTIONS 247

iREVIEW QUESTIONS

6.1 Equation V • ( —sVV) = pv may be regarded as Poisson's equation for an inhomoge-
neous medium.

( a ) T r u e : • • • " ' " " " •

(b) False

6.2 In cylindrical coordinates, equation

+dp P dp + 10 = 0

is called . '•--'• ' l )

(a) Maxwell's equation

(b) Laplace's equation '""'•

(c) Poisson's equation

(d) Helmholtz's equation

(e) Lorentz's equation

6.3 Two potential functions Vi and V2 satisfy Laplace's equation within a closed region and
assume the same values on its surface. Vx must be equal to V2.

(a) True . . ! '

(b) False

(c) Not necessarily

6.4 Which of the following potentials does not satisfy Laplace's equation?

( a ) V = 2x + 5 . . , • • , ; • ..,,.

(b) V= 10 xy ' , :

(c) V = r cos <j> " •

(e) V = p cos <$> + 10 ~ : ' - .-..- • :.' :

6.5 Which of the following is not true?

(a) - 5 cos 3x is a solution to 0"(x) + 90(x) = 0

(b) 10 sin 2x is a solution to <j)"(x) — 4cf>(x) = 0

(c) - 4 cosh 3y is a solution to ^"(y) - 9R(y) = 0

. (d) sinh 2y is a solution to R"(y) - 4R(y) = 0

(e) —-— = ——— = f(z) = - 1 where g(x) = sin x and h(y) = sinhy
g(x) h(y)
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248 H Electrostatic Boundary-Value Problems

6.6 If Vi = XlY1 is a product solution of Laplace's equation, which of these are not solutions
of Laplace's equation?

(a) -

(b) XyYy + 2xy

(c) X^ - x + y

(d)X1 + Y1

(e) (Xi - 2){YX + 3)

6.7 The capacitance of a capacitor filled by a linear dielectric is independent of the charge on
the plates and the potential difference between the plates.

(a) True

(b) False • . . - i : ; ,. ' -.

6.8 A parallel-plate capacitor connected to a battery stores twice as much charge with a given
dielectric as it does with air as dielectric, the susceptibility of the dielectric is

(a) 0

(b) I •

(c) 2

(d) 3 v

(e) 4

6.9 A potential difference Vo is applied to a mercury column in a cylindrical container. The
mercury is now poured into another cylindrical container of half the radius and the same
potential difference Vo applied across the ends. As a result of this change of space, the re-
sistance will be increased . . .. •• . .

(a) 2 times

(b) 4 times

(c) 8 times , .

(d) 16 times

6.10 Two conducting plates are inclined at an angle 30° to each other with a point charge
between them. The number of image charges is

(a) 12 / ' • " : : V " \

(b) 11

, ^ 6 - • ' " ' • • •

, (d) 5

(e) 3

Answers: 6.1a, 6.2c, 6.3a, 6.4c, 6.5b, 6.6d,e, 6.7a, 6.8b, 6.9d, 6.10b.
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PROBLEMS

PROBLEMS
6.1 In free space, V = 6xy2z + 8. At point P(\, 2, - 5 ) , find E and pv.

6.2 Two infinitely large conducting plates are located at x = 1 and x = 4. The space between

them is free space with charge distribution — nC/m3. Find Vatx = 2 if V(l) = —50V
• I < O7T

and V(4) = 50 V. ,: - ; . -

6.3 The region between x = 0 and x = d is free space and has pv = po(x — d)ld. If
V(x = 0) = 0 and V(x = d) = Vo, find: (a) V and E, (b) the surface charge densities at
x = 0 and x = d.

6.4 Show that the exact solution of the equation

• • / • • ' ' dx2 ~ m

0 <x < L

subject to

V(x = 0) = Vl V(x = L) = V2

/(/x) d\t, d\
o Jo

(a) V, = x2 + y2 - 2z + 10

(c), V3 = pz sin <j> + p

6.7 Show that the following potentials satisfy Laplace's equation.

(a) V = e ""cos 13y sinh

249

6.5 A certain material occupies the space between two conducting slabs located at y =
± 2 cm. When heated, the material emits electrons such that pv = 50(1 — y2) ^C/m3. If
the slabs are both held at 30 kV, find the potential distribution within the slabs. Take
e = 3en. .

6.6 Determine which of the following potential field distributions satisfy Laplace's equation.
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250 Electrostatic Boundary-Value Problems

d = 2 mm

'• = d) = Vn

V(z = 0) = 0

Figure 6.26 For Problem 6.11.

1

6.8 Show that E = (Ex, Ey, Ez) satisfies Laplace's equation.

6.9 Let V = (A cos nx + B sin nx)(Ceny + De~ny), where A, B, C, and £> are constants.
Show that V satisfies Laplace's equation. . >

6.10 The potential field V = 2x2yz — y3z exists in a dielectric medium having e = 2eo.
(a) Does V satisfy Laplace's equation? (b) Calculate the total charge within the unit cube
0 < x,y,z < 1 m.

6.11 Consider the conducting plates shown in Figure 6.26. If V(z = 0) = 0 and
V(z = 2 mm) = 50 V, determine V, E, and D in the dielectric region (er = 1.5) between
the plates and ps on the plates.

6.12 The cylindrical-capacitor whose cross section is in Figure 6.27 has inner and outer radii of
5 mm and 15 mm, respectively. If V(p = 5 mm) = 100 V and V(p = 1 5 mm) = 0 V,
calculate V, E, and D at p = 10 mm and ps on each plate. Take er = 2.0.

6.13 Concentric cylinders p = 2 cm and p = 6 cm are maintained at V = 60 V and
V = - 2 0 V, respectively. Calculate V, E, and D at p = 4 cm.

6.14 The region between concentric spherical conducting shells r = 0.5 m and r = 1 m is
charge free. If V(r = 0.5) = - 5 0 V and V(r = 1) = 50 V, determine the potential dis-
tribution and the electric field strength in the region between the shells.

6.15 Find V and E at (3, 0, 4) due to the two conducting cones of infinite extent shown in
Figure 6.28.

Figure 6.27 Cylindrical capacitor of Problem 6.12.
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PROBLEMS 251

V= 100 V

t

Figure 6.28 Conducting cones of Problem
6.15.

*6.16 The inner and outer electrodes of a diode are coaxial cylinders of radii a = 0.6 m and
b = 30 mm, respectively. The inner electrode is maintained at 70 V while the outer elec-
trode is grounded, (a) Assuming that the length of the electrodes € ^> a, b and ignoring
the effects of space charge, calculate the potential at p = 15 mm. (b) If an electron is in-
jected radially through a small hole in the inner electrode with velocity 107 m/s, find its
velocity at p = 15mm.

6.17 Another method of finding the capacitance of a capacitor is using energy considerations,
that is

C =
2WE

vi

Using this approach, derive eqs. (6.22), (6.28), and (6.32).

6.18 An electrode with a hyperbolic shape (xy = 4) is placed above an earthed right-angle
corner as in Figure 6.29. Calculate V and E at point (1, 2, 0) when the electrode is con-
nected to a 20-V source.

*6.19 Solve Laplace's equation for the two-dimensional electrostatic systems of Figure 6.30 and
find the potential V(x, y).

*6.20 Find the potential V(x, y) due to the two-dimensional systems of Figure 6.31.

6.21 By letting V(p, '#) = R(p)4>(4>) be the solution of Laplace's equation in a region where
p # 0, show that the separated differential equations for R and <P areKe
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- xy = 4
Figure 6.29 For Problem 6.18.

•v = o-

v=vo

(a)

Figure 6.30 For Problem 6.19.

(b) (c)

252

(0

Figure 6.31 For Problem 6.20.

• v = o

~v=o

(b)
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PROBLEMS 253

and

where X is the separation constant.

4>" + X * = 0

6.22 A potential in spherical coordinates is a function of r and 8 but not <j>. Assuming that
V(r, 6) = R(r)F(6), obtain the separated differential equations for R and F in a region for
which pv = 0.

6.23 Show that the resistance of the bar of Figure 6.17 between the vertical ends located at
4> = 0 and <p = T /2 is

R =
lot In bla

*6.24 Show that the resistance of the sector of a spherical shell of conductivity a, with cross
section shown in Figure 6.32 (where 0 < <$> < 2TT), between its base is

R =
1 1 1

2-7TCT(1 — c o s ex.) i a b

*6.25 A hollow conducting hemisphere of radius a is buried with its flat face lying flush with the
earth surface thereby serving as an earthing electrode. If the conductivity of earth is a,
show that the leakage conductance between the electrode and earth is 2iraa.

6.26 The cross section of an electric fuse is shown in Figure 6.33. If the fuse is made of copper
and of thickness 1.5 mm, calculate its resistance.

6.27 In an integrated circuit, a capacitor is formed by growing a silicon dioxide layer (s r = 4)
of thickness 1 ̂ .m over the conducting silicon substrate and covering it with a metal elec-
trode of area 5. Determine S if a capacitance of 2 nF is desired.

6.28 The parallel-plate capacitor of Figure 6.34 is quarter-filled with mica (e r = 6). Find the
capacitance of the capacitor.

Figure 6.32 For Problem 6.24.
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254 11 Electrostatic Boundary-Value Problems

4 cm 4 cm

3 cm

M •

1 cmT
f

<* •

4 cm

Figure 6.33 For Problem 6.26.

*6.29 An air-filled parallel plate capacitor of length L, width a, and plate separation d has its plates
maintained at constant potential difference Vo. If a dielectric slab of dielectric constant er is
slid between the plates and is withdrawn until only a length x remains between the plates as
in Figure 6.35, show that the force tending to restore the slab to its original position is

F =
eo(er - 1) a Vj

Id

6.30 A parallel-plate capacitor has plate area 200 cm2 and plate separation 3 mm. The charge
density is 1 /xC/m2 with air as dielectric. Find

(a) The capacitance of the capacitor

(b) The voltage between the plates

(c) The force with which the plates attract each other

6.31 Two conducting plates are placed at z = — 2 cm and z = 2 cm and are, respectively,
maintained at potentials 0 and 200 V. Assuming that the plates are separated by a
polypropylene (e = 2.25eo). Calculate: (a) the potential at the middle of the plates,
(b) the surface charge densities at the plates.

6.32 Two conducting parallel plates are separated by a dielectric material with e = 5.6e0 and
thickness 0.64 mm. Assume that each plate has an area of 80 cm2. If the potential field dis-
tribution between the plates is V = 3x + Ay - \2z + 6 kV, determine: (a) the capaci-
tance of the capacitor, (b) the potential difference between the plates.

Figure 6.34 For Problem 6.28.
,10 cm2

2 mm
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:. PROBLEMS • 255

Figure 6.35 For Problem 6.29.

6.33 The space between spherical conducting shells r = 5 cm and r = 10 cm is filled with a
dielectric material for which s = 2.25eo. The two shells are maintained at a potential dif-
ference of 80 V. (a) Find the capacitance of the system, (b) Calculate the charge density on
shell r = 5 cm.

6.34 Concentric shells r = 20 cm and r = 30 cm are held at V = 0 and V = 50, respectively.
If the space between them is filled with dielectric material (e = 3.1e0, a = 10~12 S/m),
find: (a) V, E, and D, (b) the charge densities on the shells, (c) the leakage resistance.

6.35 A spherical capacitor has inner radius a and outer radius d. Concentric with the spherical
conductors and lying between them is a spherical shell of outer radius c and inner radius
b. If the regions d < r < c,c < r < b, and b < r < a are filled with materials with per-
mittivites eu e2, and e3, respectively, determine the capacitance of the system.

6.36 Determine the capacitance of a conducting sphere of radius 5 cm deeply immersed in sea
water (er = 80).

6.37 A conducting sphere of radius 2 cm is surrounded by a concentric conducting sphere of
radius 5 cm. If the space between the spheres is filled with sodium chloride (er = 5.9),
calculate the capacitance of the system.

*6.38 In an ink-jet printer the drops are charged by surrounding the jet of radius 20 fim with a
concentric cylinder of radius 600 /jm as in Figure 6.36. Calculate the minimum voltage
required to generate a charge 50 fC on the drop if the length of the jet inside the cylinder
is 100 /xm. Take e = eo.

6.39 A given length of a cable, the capacitance of which is 10 /xF/km with a resistance of insu-
lation of 100 Mil/km, is charged to a voltage of 100 V. How long does it take the voltage
to drop to 50 V?

Liquid
reservior r-

A

\
liquid jet

Figure 6.36 Simplified geometry of an ink-jet
printer; for Problem 6.38.

drop

J
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256 Electrostatic Boundary-Value Problems

Figure 6.37 For Problem 6.40.

6.40 The capacitance per unit length of a two-wire transmission line shown in Figure 6.37 is
given by

C =
•we

cosh
2a

Determine the conductance per unit length.

*6.41 A spherical capacitor has an inner conductor of radius a carrying charge Q and maintained
at zero potential. If the outer conductor contracts from a radius b to c under internal
forces, prove that the work performed by the electric field as a result of the contraction is

W =
Q\b - c)

8-irebc

*6.42 A parallel-plate capacitor has its plates at x = 0, d and the space between the plates is

filled with an inhomogeneous material with permittivity e = e0 1 H— I. If the plate at
V dj

x = d is maintained at Vo while the plate at x = 0 is grounded, find:
(a) VandE
(b) P
(c) pps at x = 0, d

6.43 A spherical capacitor has inner radius a and outer radius b and filled with an inhomoge-
neous dielectric with e = eok/r2. Show that the capacitance of the capacitor is

C =
b - a

6.44 A cylindrical capacitor with inner radius a and outer radius b is filled with an inhomoge-
neous dielectric having e = eok/p, where A; is a constant. Calculate the capacitance per
unit length of the capacitor.

6.45 If the earth is regarded a spherical capacitor, what is its capacitance? Assume the radius of
the earth to be approximately 6370 km.
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PROBLEMS 257

6.46 A point charge of 10 nC is located at point P(0, 0, 3) while the conducting plane z = 0 is
grounded. Calculate

(a) V and Eat R(6,3,5) '
(b) The force on the charge due to induced charge on the plane.

6.47 Two point charges of 3 nC and - 4 nC are placed, respectively, at (0, 0, 1 m) and
(0, 0, 2 m) while an infinite conducting plane is at z = 0. Determine

(a) The total charge induced on the plane
(b) The magnitude of the force of attraction between the charges and the plane

6.48 Two point charges of 50 nC and - 2 0 nC are located at ( - 3 , 2, 4) and (1, 0, 5) above the
conducting ground plane z = 2. Calculate (a) the surface charge density at (7, —2, 2),
(b) D at (3, 4, 8), and (c) D at (1, 1, 1).

*6.49 A point charge of 10 jttC is located at (1, 1, 1), and the positive portions of the coordinate
planes are occupied by three mutually perpendicular plane conductors maintained at zero
potential. Find the force on the charge due to the conductors.

6.50 A point charge Q is placed between two earthed intersecting conducting planes that are in-
clined at 45° to each other. Determine the number of image charges and their locations.

6.51 Infinite line x = 3, z = 4 carries 16 nC/m and is located in free space above the conduct-
ing plane z = 0. (a) Find E at (2, — 2, 3). (b) Calculate the induced surface charge density
on the conducting plane at (5, — 6, 0).

6.52 In free space, infinite planes y = A and y = 8 carry charges 20 nC/m2 and 30 nC/m2, re-
spectively. If plane y = 2 is grounded, calculate E at P(0, 0, 0) and Q(-4, 6, 2).
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MAGNETOSTATICS
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Chapter 7

MAGNETOSTATIC FIELDS

No honest man can be all things to all people.

—ABRAHAM LINCOLN

7.1 INTRODUCTION

In Chapters 4 to 6, we limited our discussions to static electric fields characterized by
E or D. We now focus our attention on static magnetic fields, which are characterized
by H or B. There are similarities and dissimilarities between electric and magnetic fields.
As E and D are related according to D = eE for linear material space, H and B are
related according to B = pR. Table 7.1 further shows the analogy between electric and
magnetic field quantities. Some of the magnetic field quantities will be introduced later
in this chapter, and others will be presented in the next. The analogy is presented here
to show that most of the equations we have derived for the electric fields may be readily
used to obtain corresponding equations for magnetic fields if the equivalent analo-
gous quantities are substituted. This way it does not appear as if we are learning new
concepts.

A definite link between electric and magnetic fields was established by Oersted1 in
1820. As we have noticed, an electrostatic field is produced by static or stationary charges.
If the charges are moving with constant velocity, a static magnetic (or magnetostatic) field
is produced. A magnetostatic field is produced by a constant current flow (or direct
current). This current flow may be due to magnetization currents as in permanent magnets,
electron-beam currents as in vacuum tubes, or conduction currents as in current-carrying
wires. In this chapter, we consider magnetic fields in free space due to direct current. Mag-
netostatic fields in material space are covered in Chapter 8.

Our study of magnetostatics is not a dispensable luxury but an indispensable necessity.
r The development of the motors, transformers, microphones, compasses, telephone bell

ringers, television focusing controls, advertising displays, magnetically levitated high-
speed vehicles, memory stores, magnetic separators, and so on, involve magnetic phenom-
ena and play an important role in our everyday life.2

Hans Christian Oersted (1777-1851), a Danish professor of physics, after 13 years of frustrating
efforts discovered that electricity could produce magnetism.
2Various applications of magnetism can be found in J. K. Watson, Applications of Magnetism. New
York: John Wiley & Sons, 1980.

^ : , '.-."•• 2 6 1
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262 Magnetostatic Fields

TABLE 7.1 Analogy between Electric and Magnetic Fields*

Term

Basic laws

Force law

Source element

Field intensity

Flux density

Relationship between fields

Potentials

\ • - • , , * • •

Flux

Energy density

Poisson's equation

F

f
F

dQ

E

D

D

E

v ••

y
y

/ =

wE

V2

Electric

2,22
4ire2 '

D • dS = g e n c

= gE
i

= | ( V / m )

y
= - (C/m 2 )

= sE

= - W
f Pidl

J Airsr

= / D • dS

= Q = CV

- I . . .

E

<P H

F =
gu =

H =

B =

H =

A -

y =

v =

Wm =

V2A

Magnetic

4,r«2

• d\ = / e n c

gu X B

\ (A/m)

y
— (Wb/m2)

- vym (j = o)

f nidi
j 47ri?

J B - d S

L/
L f

i

"A similar analogy can be found in R. S. Elliot, "Electromagnetic theory: a
simplified representation," IEEE Trans. Educ, vol. E-24, no. 4, Nov. 1981,
pp. 294-296.

There are two major laws governing magnetostatic fields: (1) Biot-Savart's law,3 and
(2) Ampere's circuit law.4 Like Coulomb's law, Biot-Savart's law is the general law of
magnetostatics. Just as Gauss's law is a special case of Coulomb's law, Ampere's law is a
special case of Biot-Savart's law and is easily applied in problems involving symmetrical
current distribution. The two laws of magnetostatics are stated and applied first; their
derivation is provided later in the chapter.

3The experiments and analyses of the effect of a current element were carried out by Ampere and by
Jean-Baptiste and Felix Savart, around 1820.
4Andre Marie Ampere (1775-1836), a French physicist, developed Oersted's discovery and intro-
duced the concept of current element and the force between current elements.Ke
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7.2 BIOT-SAVART'S LAW 263

7.2 BIOT-SAVART'S LAW

Biot-Savart's law states that the magnetic field intensity dll produced at a point P,
as shown in Figure 7.1, by the differential current clement / ill is proportional to the
product / dl and the sine of the angle a between the clement and the line joining P to
the element and is inversely proportional to the square of the distance K between P
and the element.

That is,

or

dH =

/ dl sin a
~ R2

kl dl sin a

R~2

(7.1)

(7.2)

where k is the constant of proportionality. In SI units, k = l/4ir, so eq. (7.2) becomes

/ dl sin a
dH =

4TTRZ
(7.3)

From the definition of cross product in eq. (1.21), it is easy to notice that eq. (7.3) is
better put in vector form as

dH =
Idl X a« Idl XR

(7.4)

where R = |R| and aR = R/R. Thus the direction of d¥L can be determined by the right-
hand rule with the right-hand thumb pointing in the direction of the current, the right-hand
fingers encircling the wire in the direction of dH as shown in Figure 7.2(a). Alternatively,
we can use the right-handed screw rule to determine the direction of dH: with the screw
placed along the wire and pointed in the direction of current flow, the direction of advance
of the screw is the direction of dH as in Figure 7.2(b).

Figure 7.1 magnetic field dH at P due to current
element I dl.

dH (inward)
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264

(a)

Figure 7.2 Determining the direction of dH using
(a) the right-hand rule, or (b) the right-handed screw
rule.

It is customary to represent the direction of the magnetic field intensity H (or current
/) by a small circle with a dot or cross sign depending on whether H (or I) is out of, or into,
the page as illustrated in Figure 7.3.

Just as we can have different charge configurations (see Figure 4.5), we can have dif-
ferent current distributions: line current, surface current, and volume current as shown in
Figure 7.4. If we define K as the surface current density (in amperes/meter) and J as the
volume current density (in amperes/meter square), the source elements are related as

(7.5)

Thus in terms of the distributed current sources, the Biot-Savart law as in eq. (7.4)
becomes

H

H =

H

Id\ X aR (line current)

KdSXaR

;— (surface current)
4TTR2

J dv X aR

z— (volume current)
4wR2

(7.6)

(7.7)

(7.8)

As an example, let us apply eq. (7.6) to determine the field due to a straight current
carrying filamentary conductor of finite length AB as in Figure 7.5. We assume that the
conductor is along the z-axis with its upper and lower ends respectively subtending angles

H (or /) is out H (or /) is in Figure 7.3 Conventional representation of H (or I) (a) out of
^ the page and (b) into the page.

(a) (b)
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7.2 BIOT-SAVART'S LAW 265

(a) (b) (c)

Figure 7.4 Current distributions: (a) line current, (b) surface
current, (c) volume current.

a2 and a} at P, the point at which H is to be determined. Particular note should be taken of
this assumption as the formula to be derived will have to be applied accordingly. If we con-
sider the contribution dH at P due to an element dl at (0, 0, z),

d¥l =
Idl X R

4TTR3

But dl = dz az and R = pap - zaz, so

dl X R = P dz i

Hence,

Ipdz
H

(7.9)

(7.10)

(7.11)

Figure 7.5 Field at point P due to a straight filamen-
tary conductor.

H (into the page)
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266 w Magnetostatic Fields

Letting z = p cot a, dz — -p cosec2 a da, and eq. (7.11) becomes

H
1 f"2 p2 cosec2 a da

p3 cosec3 a

sin a da

4ir

I

4irp

or

I H = - — (cos a2 - cos
4irp

(7.12)

This expression is generally applicable for any straight filamentary conductor of finite
length. Notice from eq. (7.12) that H is always along the unit vector a^ (i.e., along concen-
tric circular paths) irrespective of the length of the wire or the point of interest P. As a
special case, when the conductor is semiinfinite (with respect to P) so that point A is now at
(9(0, 0, 0) while B is at (0, 0, °°); a, = 90°, a2 = 0°, and eq. (7.12) becomes

H =
4?rp

(7.13)

Another special case is when the conductor is infinite in length. For this case, point A is at
(0, 0, -oo) while B is at (0, 0, °°); a, = 180°, a2 = 0°, so eq. (7.12) reduces to

H =
2xp

(7.14)

To find unit vector a0 in eqs. (7.12) to (7.14) is not always easy. A simple approach is to de-
termine SJ, from

= &e X a (7.15)

where af is a unit vector along the line current and ap is a unit vector along the perpendic-
ular line from the line current to the field point.

EXAMPLE 7.1 The conducting triangular loop in Figure 7.6(a) carries a current of 10 A. Find H at (0, 0, 5)
due to side i of the loop.

Solution:

This example illustrates how eq. (7.12) is applied to any straight, thin, current-carrying
conductor. The key point to keep in mind in applying eq. (7.12) is figuring out a b a2, p,
and a^. To find H at (0, 0, 5) due to side 1 of the loop in Figure 7.6(a), consider Figure
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7.2 BIOT-SAVART'S LAW 267

.©

(a)

Figure 7.6 For Example 7.1: (a) conducting triangular
loop, (b) side 1 of the loop.

7.6(b), where side 1 is treated as a straight conductor. Notice that we join the point of in-
terest (0, 0, 5) to the beginning and end of the line current. Observe that au a2, and p are
assigned in the same manner as in Figure 7.5 on which eq. (7.12) is based.

cos a, = cos 90° = 0, cos a2 =
V29'

To determine a0 is often the hardest part of applying eq. (7.12). According to eq. (7.15),
a{ = BX and ap = az, so

= ar az = - a v

Hence,

Hi = irP
 (cos *2 -cos

= — 59.1av mA/m
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268 Magnetostatic Fields

PRACTICE EXERCISE 7.1

Find H at (0. 0, 5) due to side 3 of the triangular loop in Figure 7.6(a).

Answer: -30.63a, + 3().63av mA/m.

EXAMPLE 7.2
Find H at ( - 3 , 4, 0) due to the current filament shown in Figure 7.7(a).

Solution:
Let H = Hx + Hz, where Hx and H;, are the contributions to the magnetic field intensity at
P( — 3, 4, 0) due to the portions of the filament along x and z, respectively.

H7 =
4TTP

(cos a2 - cos

At P ( - 3 , 4, 0), p = (9 + 16)1/2 = 5, «! = 90°, a2 = 0°, and â , is obtained as a unit
vector along the circular path through P on plane z = 0 as in Figure 7.7(b). The direction
of a^ is determined using the right-handed screw rule or the right-hand rule. From the
geometry in Figure 7.7(b),

4 3
a0 = sin 6 ax + cos 6 ay = — ax + — ay

Alternatively, we can determine a^ from eq. (7.15). At point P, a.? and ap are as illustrated
in Figure 7.7(a) for Hz. Hence,

3
= - a z X ( -- ax + - ayJ = - ax + - ay

4

5

(a) (b)

Figure 7.7 For Example 7.2: (a) current filament along semiinfinite x- and
z-axes; â  and ap for Hz only; (b) determining ap for Hz.
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7.2 BIOT-SAVART'S LAW 269

as obtained before. Thus

4TT(5)

28.65ay mA/m

It should be noted that in this case a0 happens to be the negative of the regular a^ of cylin-
drical coordinates. Hz could have also been obtained in cylindrical coordinates as

z 4TT(5)V " »'

= -47.75a,£ mA/m

Similarly, for Hx at P, p = 4, a2
 = 0°, cos a, = 3/5, and a^ = az or a^ = ae X

ap = ax X ay = az. Hence,

Thus

or

= 23.88 a, mA/m

H = Hx + Uz = 38.2ax + 28.65ay + 23.88a, mA/m

H = -47.75a0 + 23.88a, mA/m

Notice that although the current filaments appear semiinfinite (they occupy the posi-
tive z- and x-axes), it is only the filament along the £-axis that is semiinfinite with respect
to point P. Thus Hz could have been found by using eq. (7.13), but the equation could not
have been used to find Hx because the filament along the x-axis is not semiinfinite with
respect to P.

PRACTICE EXERCISE 7.2

The positive v-axis (semiinfinite line with respect to the origin) carries a filamentary
current of 2 A in the —ay direction. Assume it is part of a large circuit. Find H at

(a) A(2, 3, 0)

(b) fl(3, 12, -4 )

Answer: (a) 145.8az mA/m, (b) 48.97a,. + 36.73a; mA/m.
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270 H Magnetostatic Fields

EXAMPLE 7.3 A circular loop located on x2 + y2 = 9, z = 0 carries a direct current of 10 A along a$. De-
termine H at (0, 0, 4) and (0, 0, -4 ) .

Solution:

Consider the circular loop shown in Figure 7.8(a). The magnetic field intensity dH at point
P(0, 0, h) contributed by current element / d\ is given by Biot-Savart's law:

A-KR3

where d\ = p d<j) a0, R = (0, 0, h) - (x, y, 0) = -pap + haz, and

d\ X R = 0 pd4> 0
- p 0 h

= p/i az

Hence,

- = — — - (ph d<$> ap + p2 d<\> az) = dHp i
4x[p + h ]

dHzaz

By symmetry, the contributions along ap add up to zero because the radial components
produced by pairs of current element 180° apart cancel. This may also be shown mathe-
matically by writing ap in rectangular coordinate systems (i.e., ap = cos <f> ax + sin <j> ay).

P(0, 0, h)

Figure 7.8 For Example 7.3: (a) circular current loop, (b) flux lines due
to the current loop.
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7.2 BIOT-SAVART'S LAW 271

Integrating cos <j> or sin $ over 0 < <j> < 2TT gives zero, thereby showing that Hp = 0.
Thus

H
Ip

l0 4TT[P2 47T[p2 + h2f2

or

H
2[p2 + h2f2

(a) Substituting/ = \0A,p = 3,h = 4 gives

H(0, 0, 4) = 1 0 ( 3 ) **„ = 0.36a7 A/m
2[9 + 16]3/2

(b) Notice from rflXR above that if h is replaced by - h, the z-component of dH remains
the same while the p-component still adds up to zero due to the axial symmetry of the loop.
Hence

H(0, 0, -4 ) = H(0, 0,4) = 0.36az A/m

The flux lines due to the circular current loop are sketched in Figure 7.8(b).

PRACTICE EXERCISE 7.3

A thin ring of radius 5 cm is placed on plane z = 1 cm so that its center is at
(0,0,1 cm). If the ring carries 50 mA along a^, find H at

(a) ( 0 , 0 , - l c m )

(b) (0,0, 10 cm)

Answer: (a) 400az mA/m, (b) 57.3az mA/m.

EXAMPLE 7.4
A solenoid of length € and radius a consists of N turns of wire carrying current /. Show that
at point P along its axis,

H = — (cos 62 - cos 0,)az

where n = N/€, dl and d2 are the angles subtended at P by the end turns as illustrated in
Figure 7.9. Also show that if £ ^> a, at the center of the solenoid,

H = nl&,
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272 • Magnetostatic Fields

Figure 7.9 For Example 7.4; cross section
of a solenoid.

Solution:

Consider the cross section of the solenoid as shown in Figure 7.9. Since the solenoid con-
sists of circular loops, we apply the result of Example 7.3. The contribution to the magnetic
field H at P by an element of the solenoid of length dz is

la n dz
dH7 =

Idle?

2[a2 + z2]m ~ 2[a2 + z2f2

where dl = ndz = (Nit) dz. From Figure 7.9, tan 0 = alz\ that is,

dz = -a cosec2 0 dd = -[l + " ] sin 6 dd

Hence,

or

Thus

dHz = - — sin 0 dd

Hz = - — | sin 0 dO

H = — (cos 62 - cos di) az

as required. Substituting n = Nit, gives

NI
H = — (cos 02 ~ c o s

At the center of the solenoid,

cos V7 =
1/2

[a2 + (2/4]1 = -cos
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7.3 AMPERE'S CIRCUIT LAW—MAXWELL'S EQUATION • 273

and

„ _
2 + €2/4]1/2 z2[a2 + €2/4]

If € » aor02 = O°, 0, = 180°,

H

PRACTICE EXERCISE 7.4

If the solenoid of Figure 7.9 has 2,000 turns, a length of 75 cm, a radius of 5 cm, and
carries a current of 50 mA along a^, find H at

(a) (0,0, 0)

(b) (0, 0, 75 cm)

(c) (0,0,50 cm)

Answer: (a) 66.52az him, (b) 66.52a2 him, (c) 131.7az him.

.3 AMPERE'S CIRCUIT LAW—MAXWELL'S EQUATION

Ampere's circuit law states that the line integral of the tangential component of H
around a dosed path is the same as the net current /,.IK. enclosed by the path.

In other words, the circulation of H equals /enc; that is,

(7.16)

Ampere's law is similar to Gauss's law and it is easily applied to determine H when the
current distribution is symmetrical. It should be noted that eq. (7.16) always holds whether
the current distribution is symmetrical or not but we can only use the equation to determine
H when symmetrical current distribution exists. Ampere's law is a special case of
Biot-Savart's law; the former may be derived from the latter.

By applying Stoke's theorem to the left-hand side of eq. (7.16), we obtain

/ e n c = = ( V X H W S (7.17)
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274 Magnetostatic Fields

But

4nc = J (7.18)

Comparing the surface integrals in eqs. (7.17) and (7.18) clearly reveals that

V X H = J (7.19)

This is the third Maxwell's equation to be derived; it is essentially Ampere's law in differ-
ential (or point) form whereas eq. (7.16) is the integral form. From eq. (7.19), we should
observe that V X H = J + 0; that is, magnetostatic field is not conservative.

7.4 APPLICATIONS OF AMPERE'S LAW

We now apply Ampere's circuit law to determine H for some symmetrical current distri-
butions as we did for Gauss's law. We will consider an infinite line current, an infinite
current sheet, and an infinitely long coaxial transmission line.

A. Infinite Line Current

Consider an infinitely long filamentary current / along the z-axis as in Figure 7.10. To de-
termine H at an observation point P, we allow a closed path pass through P. This path, on
which Ampere's law is to be applied, is known as an Amperian path (analogous to the term
Gaussian surface). We choose a concentric circle as the Amperian path in view of
eq. (7.14), which shows that H is constant provided p is constant. Since this path encloses
the whole current /, according to Ampere's law

j pd<f> = 2irp

Amperian path

Figure 7.10 Ampere's law applied to an infinite filamentary
line current.
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(7.20)

as expected from eq. (7.14).

B. Infinite Sheet of Current

Consider an infinite current sheet in the z = 0 plane. If the sheet has a uniform current
density K = Kyay A/m as shown in Figure 7.11, applying Ampere's law to the rectangular
closed path (Amperian path) gives

H • d\ = /enc = Kyb (7.21a)

To evaluate the integral, we first need to have an idea of what H is like. To achieve this, we
regard the infinite sheet as comprising of filaments; dH above or below the sheet due to a
pair of filamentary currents can be found using eqs. (7.14) and (7.15). As evident in Figure
7.11(b), the resultant dH has only an x-component. Also, H on one side of the sheet is the
negative of that on the other side. Due to the infinite extent of the sheet, the sheet can be re-
garded as consisting of such filamentary pairs so that the characteristics of H for a pair are
the same for the infinite current sheets, that is,

JHoax
I ~Hoax

z > 0
z < 0

(7.21b)

(a)

Figure 7.11 Application of Ampere's law to an infinite sheet: (a) closed path 1-2-3-4-1, (b) sym-
metrical pair of current filaments with current along ay.
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276 Magnetostatic Fields

where Ho is yet to be determined. Evaluating the line integral of H in eq. (7.21b) along the
closed path in Figure 7.11 (a) gives

U-dl = [ \ + + + j H • rfl
I h h M '

= 0 ( -a ) + (-Ho)(-b) + 0(fl) + Ho(b)
= 2Hob

1

(7.21c)

From eqs. (7.21a) and (7.21c), we obtain Ho = — Ky. Substituting Ho in eq. (7.21b) gives

H = <
z>0

(7.22)
-~Kyax, z<0

In general, for an infinite sheet of current density K A/m,

(7.23)

where an is a unit normal vector directed from the current sheet to the point of interest.

C. Infinitely Long Coaxial Transmission Line

Consider an infinitely long transmission line consisting of two concentric cylinders having
their axes along the z-axis. The cross section of the line is shown in Figure 7.12, where the
z-axis is out of the page. The inner conductor has radius a and carries current / while the
outer conductor has inner radius b and thickness t and carries return current - / . We want
to determine H everywhere assuming that current is uniformly distributed in both conduc-
tors. Since the current distribution is symmetrical, we apply Ampere's law along the Am-

©

Amperian paths Figure 7.12 Cross section of the
4 yf transmission line; the positive ?-direc-

tion is out of the page.
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278 Magnetostatic Fields

and J in this case is the current density (current per unit area) of the outer conductor and is
along -av that is,

J = -

Thus

ir[(b + if - b2] z

2TT rp

= / 1
p2-b2

t2 + 2bt.

p dp d<f>

Substituting this in eq. (7.27a), we have

H -

For region p > 6 + t, we use path L4, getting

L4

or

Putting eqs. (7.25) to (7.28) together gives

(7.27b)

(7.28)

H = <

aw,,

2?rp

0,
2bt

0 < p < a

a < p < Z?

b < p<b + t

p > b + t

(7.29)

The magnitude of H is sketched in Figure 7.13.
Notice from these examples that the ability to take H from under the integral sign is

the key to using Ampere's law to determine H. In other words, Ampere's law can only be
used to find H due to symmetric current distributions for which it is possible to find a
closed path over which H is constant in magnitude.
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7.4 APPLICATIONS OF AMPERE'S LAW 279

Figure 7.13 Plot of H^ against p.

•U-

b b+t

EXAMPLE 7.5
Planes 2 = 0 and z = 4 carry current K = -lOa* A/m and K = lOa* A/m, respectively.
Determine H at

(a) (1,1,1)
(b) (0, - 3 , 10)

Solution:

Let the parallel current sheets be as in Figure 7.14. Also let

H = Ho + H4

where Ho and H4 are the contributions due to the current sheets z = 0 and z = 4, respec-
tively. We make use of eq. (7.23).

(a) At (1, 1, 1), which is between the plates (0 < z = 1 < 4),

Ho = 1/2 K X an = 1/2 (-10ax) X a, = 5av A/m

H4 = l / 2 K X a , = 1/2 (10ax) X (-a,) = 5ay A/m

Hence,

H = 10ay A/m

: = 4 Figure 7.14 For Example 7.5; parallel

» » « « M » B = t infinite current sheets.

y \® 8 8 8 8
z = 0
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280 • Magnetostatic Fields

(b) At (0, - 3 , 10), which is above the two sheets (z = 10 > 4 > 0),

Ho = 1/2 ( - 10a*) X az = 5a, A/m

H4 = 1/2 (lOaJ X az = -5a y A/m

Hence,

H = 0 A/m

PRACTICE EXERCISE 7.5

Plane y = 1 carries current K = 50az mA/m. Find H at

(a) (0,0,0)

(b) (1 ,5 , -3 )

Answer: (a) 25ax mA/m, (b) — 25a* mA/m.

EXAMPLE 7.6
A toroid whose dimensions are shown in Figure 7.15 has N turns and carries current /. De
termine H inside and outside the toroid.

Solution:

We apply Ampere's circuit law to the Amperian path, which is a circle of radius p show
dotted in Figure 7.15. Since N wires cut through this path each carrying current /, the n<
current enclosed by the Amperian path is NI. Hence,

H • d\ = 7enc -> H • 2irp = M

Figure 7.15 For Example 7.6; a toroid with a circular cross
section.
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7.5 MAGNETIC FLUX DENSITY—MAXWELL'S EQUATION • 281

or

H =
NI

2irp'
for po - a < p < po + a

where po is the mean radius of the toroid as shown in Figure 7.15. An approximate value of
His

H,
NI NI

approx 2irpo

Notice that this is the same as the formula obtained for H for points well inside a very long
solenoid (€ 5s> a). Thus a straight solenoid may be regarded as a special toroidal coil for
which po —»co. Outside the toroid, the current enclosed by an Amperian path is
NI - NI = 0 and hence H = 0.

PRACTICE EXERCISE 7.6

A toroid of circular cross section whose center is at the origin and axis the same as
the z-axis has 1000 turns with po - 10 cm, a = 1 cm. If the toroid carries a 100-mA
current, find \H\ at / \...,. / '

\ - * • • ' •

(a) (3 c m , - 4 cm, 0) • !>~ ' .

(b) (6 cm, 9 cm, 0)

Answer: (a) 0, (b) 147.1 A/m.

-.5 MAGNETIC FLUX DENSITY—MAXWELL'S
EQUATION

The magnetic flux density B is similar to the electric flux density D. As D = soE in free
space, the magnetic flux density B is related to the magnetic field intensity H according to

(7.30)

where ^o is a constant known as the permeability of free space. The constant is in
henrys/meter (H/m) and has the value of

= 4TT X 10~7 H/m (7.31)

The precise definition of the magnetic field B, in terms of the magnetic force, will be given
in the next chapter.
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282 Magnetostatic Fields

Figure 7.16 Magnetic flux lines due to a straight
Magnetic flux lines wire with current coming out of the page.

The magnetic flux through a surface S is given by

(7.32)

where the magnetic flux f is in webers (Wb) and the magnetic flux density is in
webers/square meter (Wb/m2) or teslas.

The magnetic flux line is the path to which B is tangential at every point in a magnetic
field. It is the line along which the needle of a magnetic compass will orient itself if placed
in the magnetic field. For example, the magnetic flux lines due to a straight long wire are
shown in Figure 7.16. The flux lines are determined using the same principle followed in
Section 4.10 for the electric flux lines. The direction of B is taken as that indicated as
"north" by the needle of the magnetic compass. Notice that each flux line is closed and has
no beginning or end. Though Figure 7.16 is for a straight, current-carrying conductor, it is
generally true that magnetic flux lines are closed and do not cross each other regardless of
the current distribution.

In an electrostatic field, the flux passing through a closed surface is the same as the
charge enclosed; that is, *P = §D • dS = Q. Thus it is possible to have an isolated electric
charge as shown in Figure 7.17(a), which also reveals that electric flux lines are not neces-
sarily closed. Unlike electric flux lines, magnetic flux lines always close upon themselves
as in Figure 7.17(b). This is due to the fact that it is not possible to have isolated magnetic

closed surface, *• = Q

closed surface, f = 0

(a) (b)

Figure 7.17 Flux leaving a closed surface due to: (a) isolated electric
charge V = §s D • dS = Q, (b) magnetic charge, Y = §s B • dS = 0.
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N

S

N

S

N

S

N

S

N

S

N

S
N

S

s

B
N

N'

N

N

Figure 7.18 Successive division of a bar magnet results in pieces with
north and south poles, showing that magnetic poles cannot be isolated.

poles (or magnetic charges). For example, if we desire to have an isolated magnetic pole
by dividing a magnetic bar successively into two, we end up with pieces each having north
and south poles as illustrated in Figure 7.18. We find it impossible to separate the north
pole from the south pole.

An isolated magnetic charge does not exist.

Thus the total flux through a closed surface in a magnetic field must be zero; that is,

(7.33)

This equation is referred to as the law of conservation of magnetic flux or Gauss's law for
magnetostatic fields just as § D • dS = Q is Gauss's law for electrostatic fields. Although
the magnetostatic field is not conservative, magnetic flux is conserved.

By applying the divergence theorem to eq. (7.33), we obtain

B • dS = V • B dv = 0

or

V B = 0 (7.34)

This equation is the fourth Maxwell's equation to be derived. Equation (7.33) or (7.34)
shows that magnetostatic fields have no sources or sinks. Equation (7.34) suggests that
magnetic field lines are always continuous.

.6 MAXWELL'S EQUATIONS FOR STATIC EM FIELDS

Having derived Maxwell's four equations for static electromagnetic fields, we may take a
moment to put them together as in Table 7.2. From the table, we notice that the order in
which the equations were derived has been changed for the sake of clarity.
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284 Magnetostatic Fields

TABLE 7.2 Maxwell's Equations for Static EM Fields

Differential (or Point) Form Integral Form Remarks

V • D = pv

V - B = 0

V X E = 0

V x H = J

D • dS = pv dv Gauss's law

B • dS =

E • d\ = '

Nonexistence of magnetic
monopole

Conservativeness of
electrostatic field

H • d\ = J • dS Ampere's law

The choice between differential and integral forms of the equations depends on a
given problem. It is evident from Table 7.2 that a vector field is defined completely by
specifying its curl and divergence. A field can only be electric or magnetic if it satisfies the
corresponding Maxwell's equations (see Problems 7.26 and 7.27). It should be noted that
Maxwell's equations as in Table 7.2 are only for static EM fields. As will be discussed in
Chapter 9, the divergence equations will remain the same for time-varying EM fields but
the curl equations will have to be modified.

7.7 MAGNETIC SCALAR AND VECTOR POTENTIALS

We recall that some electrostatic field problems were simplified by relating the electric po-
tential V to the electric field intensity E (E = — VV). Similarly, we can define a potential
associated with magnetostatic field B. In fact, the magnetic potential could be scalar Vm or
vector A. To define Vm and A involves recalling two important identities (see Example 3.9
and Practice Exercise 3.9):

V X (VV) = 0

V • (V X A) = 0

(7.35a)

(7.35b)

which must always hold for any scalar field V and vector field A.
Just as E = - VV, we define the magnetic scalar potential Vm (in amperes) as related

to H according to

H = -VVm if J = 0 (7.36)

The condition attached to this equation is important and will be explained. Combining eq.
(7.36) and eq. (7.19) gives

J = V X H = V X ( - VVm) = 0 (7.37)
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7.7 MAGNETIC SCALAR AND VECTOR POTENTIALS 285

since Vm must satisfy the condition in eq. (7.35a). Thus the magnetic scalar potential Vm is
only defined in a region where J = 0 as in eq. (7.36). We should also note that Vm satisfies
Laplace's equation just as V does for electrostatic fields; hence,

V2Vm = 0, (J = 0) (7.38)

We know that for a magnetostatic field, V • B = 0 as stated in eq. (7.34). In order to
satisfy eqs. (7.34) and (7.35b) simultaneously, we can define the vector magnetic potential
A (in Wb/m) such that

B = V X A

Just as we defined

we can define

V =
dQ

4ireor

(7.39)

(7.40)

for line current

for surface current

for volume current

(7.41)

(7.42)

(7.43)

Rather than obtaining eqs. (7.41) to (7.43) from eq. (7.40), an alternative approach
would be to obtain eqs. (7.41) to (7.43) from eqs. (7.6) to (7.8). For example, we can derive
eq. (7.41) from eq. (7.6) in conjunction with eq. (7.39). To do this, we write eq. (7.6) as

IdV X R

R3
(7.44)

where R is the distance vector from the line element dV at the source point (x1, y', z') to the
field point (x, y, z) as shown in Figure 7.19 and R = |R|, that is,

R = |r - r'| = [(x - x'f + (y - y'f + (z - z'f]1 (7.45)

Hence,

v| 1\ =
Rj

(x - x')ax + (y - / )a y R

[(x - x'f - y'f + (z - z')T2
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286 • Magnetostatic Fields

R = r r'

Figure 7.19 Illustration of the source point
(*', y', z') and the field point (x, y, z).

(x, y, z)

or

R R
(7.46)

where the differentiation is with respect to x, y, and z. Substituting this into eq. (7.44), we
obtain

B= - - M IdV X v ( -
4TT R

(7.47)

We apply the vector identity

V X ( / F ) = / V X F + ( V / ) X F (7.48)

where/is a scalar field and F is a vector field. Taking / = \IR and F = dV, we have

Since V operates with respect to (x, y, z) while dV is a function of (x\ y', z'), V X dV = 0.
Hence,

(7.49)

(7.50)

With this equation, eq. (7.47) reduces to

B = V x
4irR

Comparing eq. (7.50) with eq. (7.39) shows that

verifying eq. (7.41).
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7.7 MAGNETIC SCALAR AND VECTOR POTENTIALS • 287

By substituting eq. (7.39) into eq. (7.32) and applying Stokes's theorem, we obtain

= B • dS = (V X A) • dS = <P A • d\

4
or

(7.51)

Thus the magnetic flux through a given area can be found using either eq. (7.32) or (7.51).
Also, the magnetic field can be determined using either Vm or A; the choice is dictated by
the nature of the given problem except that Vm can only be used in a source-free region.
The use of the magnetic vector potential provides a powerful, elegant approach to solving
EM problems, particularly those relating to antennas. As we shall notice in Chapter 13, it
is more convenient to find B by first finding A in antenna problems.

EXAMPLE 7.7 Given the magnetic vector potential A = —p2/4 az Wb/m, calculate the total magnetic flux
crossing the surface <f> = -ir/2, 1 < p < 2 m , 0 < z < 5 m .

Solution:

We can solve this problem in two different ways: using eq. (7.32) or eq. (7.51).

Method 1:

B = V x A = —-* a0 = J a0,op 2
dS = dp dz a0

Hence,

TP = j B • dS = -

¥ = 3.75 Wb

1
p dp dz = — p

z=0 •>=

(5) =
15

Method 2:
We use

<p = I A • d\ = f i + v2 + r3 + v4
'L

where L is the path bounding surface S; V 1( f 2, ¥3, and V4 are, respectively, the evalua-
tions of /A • d\ along the segments of L labeled 1 to 4 in Figure 7.20. Since A has only a
2-component,

¥>, = 0 = y 3
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5 -

4 -

3 -

2 -

1 -

©'

©

©
L

1 *

That is,

i rr\ 2

Figure 7.20 For Example 7.7.

= 3.75 Wb

as obtained previously. Note that the direction of the path L must agree with that of dS.

PRACTICE EXERCISE 7.7

A current distribution gives rise to the vector magnetic potential A = xzy&x +

y2xay — 4xyzaz Wb/m. Calculate

(a) B a t ( - 1 , 2 , 5)

(b) The flux through the surface defined b y z = 1 , 0 ^ x ^ 1 , - 1 < y < 4

Answer: (a) 20ax + 40ay + 3az Wb/m2, (b) 20 Wb.

EXAMPLE 7.8
If plane z = 0 carries uniform current K = Kyay,

H
1/2 Kyax,
-l/2Kvax,

>0
<0

This was obtained in Section 7.4 using Ampere's law. Obtain this by using the concept of
vector magnetic potential.
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7.7 MAGNETIC SCALAR AND VECTOR POTENTIALS • 289

Solution:

Consider the current sheet as in Figure 7.21. From eq. (7.42),

lxoKdS
dA =

A-KR

In this problem, K = Kyay, dS = dx' dy', and for z > 0,

R = |R| = |(0, 0, z) - (x',y',0)\
= \ix'f + (y'f + z2]112 (7.8.1)

where the primed coordinates are for the source point while the unprimed coordinates are
for the field point. It is necessary (and customary) to distinguish between the two points to
avoid confusion (see Figure 7.19). Hence

dA =
dx' dy' ay

4TT[(X')2 + (y'f + z2]'f + z2]1'2

dB = V X dA = —— d Ay ax

dz
jxoKyz dx' dy' ax

B

4ir[(x')2 + (y'f + z2]3'2

H0Kzax r f °° dx' dy'
2n3/2 (7.8.2)

In the integrand, we may change coordinates from Cartesian to cylindrical for convenience
so that

Hence

B =
4ir

fioKyz

4ir

jxoKyzax

P' d4>' dp'

y=o v=o
;2TT I [(p')

- 1

too2 + z2y p'=0

/̂ o 2
f or z > 0

By simply replacing z by ~z in eq. (7.8.2) and following the same procedure, we obtain

is

H = — l ax, for z < 0
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290 • Magnetostatic Fields

Figure 7.21 For Example 7.8; infinite
current sheet.

*• y

PRACTICE EXERCISE 7.8

Repeat Example 7.8 by using Biot-Savart's law to determine H at points (0,0, h)
and (0,0, -h).

7.8 DERIVATION OF BIOT-SAVART'S LAW
AND AMPERE'S LAW

Both Biot-Savart's law and Ampere's law may be derived using the concept of magnetic
vector potential. The derivation will involve the use of the vector identities in eq. (7.48)
and

V X V X A = V(V • A) - V2A (7.52)

Since Biot-Savart's law as given in eq. (7.4) is basically on line current, we begin our
derivation with eqs. (7.39) and (7.41); that is,

4TTR 4TT R
(7.53)

where R is as denned in eq. (7.45). If the vector identity in eq. (7.48) is applied by letting
F = dl and / = \IR, eq. (7.53) becomes

(7.54)

Since V operates with respect to (x, y, z) and dl' is a function of (xr, y', z'), V X dl' = 0.
Also

- = [(x - x'f + (y- y'f + (z - z')2]
R

-1/2 (7.55)
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7.8 DERIVATION OF BIOT-SAVART'S LAW AND AMPERE'S LAW 291

j_l = (x - x')ax + (y- y')ay + (z - z')az = _a«

R [(x - x'f + (y~ y'Y
-, 3/2 (7.56)

where a^ is a unit vector from the source point to the field point. Thus eq. (7.54) (upon
dropping the prime in d\') becomes

4TT ) L R2

which is Biot-Savart's law.
Using the identity in eq. (7.52) with eq. (7.39), we obtain

V X B = V(V • A) - V2A

It can be shown that for a static magnetic field

V-A = 0

so that upon replacing B with /xoH and using eq. (7.19), eq. (7.58) becomes

V2A = -AIOV X H

or

V2A = -i

(7.57)

(7.58)

(7.59)

(7.60)

which is called the vector Poisson's equation. It is similar to Poisson's equation
(V2V = ~pvle) in electrostatics. In Cartesian coordinates, eq. (7.60) may be decomposed
into three scalar equations:

V2AX = ~

V2Ay = - (7.61)

which may be regarded as the scalar Poisson's equations.
It can also be shown that Ampere's circuit law is consistent with our definition of the

magnetic vector potential. From Stokes's theorem and eq. (7.39),

H d\ = V X H • dS

V X (V X A)-dS

From eqs. (7.52), (7.59), and (7.60),

VxVxA=-V2A =

(7.62)Ke
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•2 I '."agnetostatic Fields

Substituting this into eq. (7.62) yields

H d\ = J • dS = I

which is Ampere's circuit law.

SUMMARY 1. The basic laws (Biot-Savart's and Ampere's) that govern magnetostatic fields are dis-
cussed. Biot-Savart's law, which is similar to Coulomb's law, states that the magnetic
field intensity dH at r due to current element / d\ at r' is

dR
Id\ X R

(in A/m)

where R = r — r' and R = |R|. For surface or volume current distribution, we replace
/ d\ with K dS or J dv respectively; that is,

Id\ = = Jdv

2. Ampere's circuit law, which is similar to Gauss's law, states that the circulation of H
around a closed path is equal to the current enclosed by the path; that is,

or

V X H = J

= IeiK = \ J - d S

(third Maxwell's equation to be derived).

When current distribution is symmetric so that an Amperian path (on which H
is constant) can be found, Ampere's law is useful in determining H; that is,

= Im or H^ =
*enc

3. The magnetic flux through a surface S is given by

f = \B-dS (inWb)

where B is the magnetic flux density in Wb/m2. In free space,

where fio = 4ir X 10 7 H/m = permeability of free space.
4. Since an isolated or free magnetic monopole does not exist, the net magnetic flux

through a closed surface is zero;

f = <t B • dS = 0
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or

V • B = 0 (fourth Maxwell's equation to be derived).

5. At this point, all four Maxwell's equations for static EM fields have been derived,
namely:

V • D = Pv

V-B = 0

V X E = 0

V X H = J

6. The magnetic scalar potential Vm is defined as

H = - W m if J = 0

and the magnetic vector potential A as

B = V X A

where V • A = 0. With the definition of A, the magnetic flux through a surface S can be
found from

V = | A • d\
'L

where L is the closed path defining surface S (see Figure 3.20). Rather than using
Biot-Savart's law, the magnetic field due to a current distribution may be found using
A, a powerful approach that is particularly useful in antenna theory. For a current
element / d\ at r', the magnetic vector potential at r is

A =
A-KR '

R= r - r ' l

7. Elements of similarity between electric and magnetic fields exist. Some of these are
listed in Table 7.1. Corresponding to Poisson's equation V2V = —pvle, for example, is

V2A = -nJ

7.1 One of the following is not a source of magnetostatic fields:

(a) A dc current in a wire

(b) A permanent magnet

(c) An accelerated charge

(d) An electric field linearly changing with time

(e) A charged disk rotating at uniform speed
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294 Magnetostatic Fields

7.2 Identify the configuration in Figure 7.22 that is not a correct representation of /
and H.

7.3 Consider points A, B, C, D, and £ on a circle of radius 2 as shown in Figure 7.23. The
items in the right list are the values of a^ at different points on the circle. Match these
items with the points in the list on the left.

(a)

(b)

(c)

(d)

(e)

A

B

C

D

77
h

(1)

(ii)
(iii)

(iv)

(v)

(vi)

(vii)

(viii)

ax

- a *
a>
- a v

a, + ay

V2
- a x - a.

- a x + ay

ax - ay

7.4 The z-axis carries filamentary current of IOTT A along az. Which of these is incorrect?

(a) H = - a , A / m at (0 ,5 ,0)

(b) H = a^ A/m at (5, TT/4, 0)

(c) H = -0.8ax - 0 .6a } , a t ( -3 ,4 , 0)

(d) H = - a 0 a t ( 5 , 3ir/2, 0)

7.5 Plane y = 0 carries a uniform current of 30az niA/m. At (1, 10, —2), the magnetic field
intensity is

(a) —\5&xm£Jm

(b) 15

(a)

(d)

(b) (c)

H
© ©

'O ©
© ©

(e)

Figure 7.22 For Review Question 7.2.
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Figure 7.23 For Review Question 7.3.

(c) 477.5a,,/xA/m

(d) 18.85avnA/m

(e) None of the above

7.6 For the currents and closed paths of Figure 7.24, calculate the value of j>L H • d\.

7.7 Which of these statements is not characteristic of a static magnetic field?

(a) It is solenoidal.

(b) It is conservative.

(c) It has no sinks or sources.

(d) Magnetic flux lines are always closed.

(e) The total number of flux lines entering a given region is equal to the total number of
flux lines leaving the region.

Si 30 A

Figure 7.24 For Review Question 7.6.

30 A

(c) (d)
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296 Magnetostatic Fields

Figure 7.25 For Review Question 7.10.

Volume

7.8 Two identical coaxial circular coils carry the same current / but in opposite direc-
tions. The magnitude of the magnetic field B at a point on the axis midway between the
coils is

(a) Zero

(b) The same as that produced by one coil

(c) Twice that produced by one coil

(d) Half that produced by one coil.

7.9 One of these equations is not Maxwell's equation for a static electromagnetic field in a
linear homogeneous medium.

(a) V • B = 0

(b) V X D = 0
(c) 0 B • d\ = nJ
(d) § D • dS = Q

(e) V2A = nJ

7.10 Two bar magnets with their north poles have strength Qml = 20 A • m and
Qm2 = 10 A • m (magnetic charges) are placed inside a volume as shown in Figure 7.25.
The magnetic flux leaving the volume is

(a) 200 Wb

(b) 30 Wb

(c) 10 Wb

(d) OWb

(e) - lOWb

Answers: 7.1c, 7.2c, 7.3 (a)-(ii), (b)-(vi), (c)-(i), (d)-(v), (e)-(iii), 7.4d, 7.5a, 7.6 (a) 10 A,
(b) - 2 0 A, (c) 0, (d) - 1 0 A, 7.7b, 7.8a, 7.9e, 7.10d.

PROBLEMS
7.1 (a) State Biot-Savart's law

(b) The y- and z-axes, respectively, carry filamentary currents 10 A along ay and 20 A
along -az. Find H at ( - 3 , 4, 5).
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Figure 7.26 For Problem 7.3.

7.2 A conducting filament carries current / from point A(0, 0, a) to point 5(0, 0, b). Show
that at point P(x, y, 0),

H =
Vx^

7.3 Consider AB in Figure 7.26 as part of an electric circuit. Find H at the origin due to AB.

7.4 Repeat Problem 7.3 for the conductor AB in Figure 7.27.

7.5 Line x = 0, y = 0, 0 < z £ 10m carries current 2 A along az. Calculate H at points

(a) (5, 0, 0)

(b) (5, 5, 0)

(c) (5, 15, 0)

(d) ( 5 , - 1 5 , 0 )

*7.6 (a) Find H at (0, 0, 5) due to side 2 of the triangular loop in Figure 7.6(a).

(b) Find H at (0, 0, 5) due to the entire loop.

7.7 An infinitely long conductor is bent into an L shape as shown in Figure 7.28. If a direct
current of 5 A flows in the current, find the magnetic field intensity at (a) (2, 2, 0),
(b)(0, - 2 , 0), and (c) (0,0, 2).

Figure 7.27 For Problem 7.4.
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298 Magnetostatic Fields

Figure 7.28 Current filament for Problem 7.7.

5 A

5A

7.8 Find H at the center C of an equilateral triangular loop of side 4 m carrying 5 A of current
as in Figure 7.29.

7.9 A rectangular loop carrying 10 A of current is placed on z = 0 plane as shown in Figure
7.30. Evaluate H at

(a) (2, 2, 0)

(b) (4, 2, 0)

(c) (4, 8, 0)

(d) (0, 0, 2)

7.10 A square conducting loop of side 2a lies in the z = 0 plane and carries a current / in the
counterclockwise direction. Show that at the center of the loop

H
•wa

*7.11 (a) A filamentary loop carrying current / is bent to assume the shape of a regular polygon
of n sides. Show that at the center of the polygon

nl . ir
H = sin —

2irr n

where r is the radius of the circle circumscribed by the polygon.

(b) Apply this to cases when n = 3 and n = 4 and see if your results agree with those for
the triangular loop of Problem 7.8 and the square loop of Problem 7.10, respectively.

Figure 7.29 Equilateral triangular loop for
Problem 7.8.
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PROBLEMS • 299

Figure 7.30 Rectangular loop of Problem 7.9.

(c) As n becomes large, show that the result of part (a) becomes that of the circular loop
of Example 7.3.

7.12 For the filamentary loop shown in Figure 7.31, find the magnetic field strength at O.

7.13 Two identical current loops have their centers at (0, 0, 0) and (0, 0, 4) and their axes the
same as the z-axis (so that the "Helmholtz coil" is formed). If each loop has radius 2 m
and carries current 5 A in a ,̂ calculate H at

(a) (0,0,0)
(b) (0,0,2)

7.14 A 3-cm-long solenoid carries a current of 400 mA. If the solenoid is to produce a mag-
netic flux density of 5 mWb/m , how many turns of wire are needed?

7.15 A solenoid of radius 4 mm and length 2 cm has 150 turns/m and carries current 500 mA.
Find: (a) [H at the center, (b) |H | at the ends of the solenoid.

7.16 Plane x = 10 carries current 100 mA/m along az while line x = 1, y = —2 carries fila-
mentary current 20TT mA along a r Determine H at (4, 3, 2).

7.17 (a) State Ampere's circuit law.

(b) A hollow conducting cylinder has inner radius a and outer radius b and carries current
/ along the positive z-direction. Find H everywhere.

10 A

100 cm

10 A

Figure 7.31 Filamentary loop of Problem 7.12; not drawn to scale.
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300 Magnetostatic Fields

7.18 (a) An infinitely long solid conductor of radius a is placed along the z-axis. If the con-
ductor carries current / i n the + z direction, show that

H = 2a<t>2ira

within the conductor. Find the corresponding current density,

(b) If / = 3 A and a = 2 cm in part (a), find H at (0, 1 cm, 0) and (0, 4 cm, 0).

(7.19 If H = yax - xay A/m on plane z = 0, (a) determine the current density and (b) verify
" Ampere's law by taking the circulation of H around the edge of the rectangle

Z = 0, 0 < x < 3, - 1 < y < 4.

7.20 In a certain conducting region, - . • - , • •

H = yz(x2 + y2)ax - y2xzay + 4x2y2az A/m .

(a) Determine J at (5, 2 , - 3 )

(b) Find the current passing through x = —1,0 < y,z < 2

(c) Show that V • B = 0

7.21 An infinitely long filamentary wire carries a current of 2 A in the +z-direction.
Calculate

(a) B a t ( - 3 , 4 , 7 ) " - . . • • • • ..;•••.•

(b) The flux through the square loop described by 2 < p < 6, 0 < z ^ 4, <£ = 90°

7.22 The electric motor shown in Figure 7.32 has field

106

H = s in 2<j> a A/m

Calculate the flux per pole passing through the air gap if the axial length of the pole is
20 cm.

7.23 Consider the two-wire transmission line whose cross section is illustrated in Figure 7.33.
Each wire is of radius 2 cm and the wires are separated 10 cm. The wire centered at (0, 0)

Figure 7.32 Electric motor pole of Problem 7.22.

armature
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PROBLEMS 301

4 c m±KJ
-10 cm-

Figure 7.33 Two-wire line of Problem
7.23.

carries current 5 A while the other centered at (10 cm, 0) carries the return current. Find
Hat

(a) (5 cm, 0)

(b) (10 cm, 5 cm)

7.24 Determine the magnetic flux through a rectangular loop (a X b) due to an infinitely long
conductor carrying current / as shown in Figure 7.34. The loop and the straight conductors
are separated by distance d.

*7.25 A brass ring with triangular cross section encircles a very long straight wire concentrically
as in Figure 7.35. If the wire carries a current /, show that the total number of magnetic
flux lines in the ring is

r = b — a In
a + b

2-wb L b

Calculate V if a = 30 cm, b = 10 cm, h = 5 cm, and / = 10 A.

7.26 Consider the following arbitrary fields. Find out which of them can possibly represent
electrostatic or magnetostatic field in free space.

(a) A = y cos axax + (y + e~x)az

(b) B = — ap

(c) C = r2 sin 6 a0

Figure 7.34 For Problem 7.24
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302 • Magnetostatic Fields

hv.

- Brass ring

Figure 7.35 Cross section of a brass ring enclosing a long
straight wire; for Problem 7.25.

7.27 Reconsider the previous problem for the following fields.

(a) D = y2zax + 2{x + \)yzay - (JC + l)z2az

,, , _ (z + 1) , , s i n 0
(b) E = cos 4> aD H

P P

(c) F = — (2 cos 6 ar + sin d ae)

7.28 For a current distribution in free space,

A = {2x2y + yz)ax + {xy2 - xz3)ay - (6xyz ~ 2jc2.y2 )az Wb/m

(a) Calculate B.

(b) Find the magnetic flux through a loop described by x = 1, 0 < y, z < 2.

(c) Show that V • A = 0 and V • B = 0.

7.29 The magnetic vector potential of a current distribution in free space is given by

A = 15<?~p sin <j> az Wb/m

Find H at (3, ir/4, - 10). Calculate the flux through p = 5, 0 £ 0 < w/2, 0 < z < 10.

7.30 A conductor of radius a carries a uniform current with J = Joaz. Show that the magnetic
vector potential for p > a is

A = --)iaJop
2az

7.31 An infinitely long conductor of radius a is placed such that its axis is along the z-axis. The
vector magnetic potential, due to a direct current Io flowing along a, in the conductor, is
given by

A = ~ fxo(x
2 + y2) az Wb/m

Find the corresponding H. Confirm your result using Ampere's law.
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PROBLEMS • 303

7.32 The magnetic vector potential of two parallel infinite straight current filaments in free
space carrying equal current / in opposite direction is

JX.1 d - p
A = — In a,

2TT p

where d is the separation distance between the filaments (with one filament placed along
the z-axis). Find the corresponding magnetic flux density B.

7.33 Find the current density J to

in free space.

A = — az Wb/m
P

7.34 Prove that the magnetic scalar potential at (0, 0, z) due to a circular loop of radius a
shown in Figure 7.8(a) is

V m = - | 1 -

*7.35 A coaxial transmission line is constructed such that the radius of the inner conductor is a
and the outer conductor has radii 3a and 4a. Find the vector magnetic potential within the
outer conductor. Assume Az = 0 for p = 3a.

7.36 The z-axis carries a filamentary current 12 A along az. Calculate Vm at (4, 30°, - 2 ) if
Vm = Oat(10, 60°, 7).

7.37 Plane z = — 2 carries a current of 50ay A/m. If Vm = 0 at the origin, find Vm at

(a) ( - 2 , 0 , 5 )

(b) (10, 3, 1)

7.38 Prove in cylindrical coordinates that

(a) V X (VV) = 0

(b) V • (V X A) = 0

7.39 IfR = r - r' and/? = |R|, show that

R R fl3

where V and V are del operators with respect to (x, y, z) and (x', y', z), respectively.
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Chapter 8

MAGNETIC FORCES, MATERIALS,
AND DEVICES

Do all the good you can,
By all the means you can,
In all the ways you can,
In all the places you can,
At all the times you can,
To all the people you can,
As long as ever you can.

—JOHN WESLEY

8.1 INTRODUCTION

Having considered the basic laws and techniques commonly used in calculating magnetic
field B due to current-carrying elements, we are prepared to study the force a magnetic
field exerts on charged particles, current elements, and loops. Such a study is important to
problems on electrical devices such as ammeters, voltmeters, galvanometers, cyclotrons,
plasmas, motors, and magnetohydrodynamic generators. The precise definition of the mag-
netic field, deliberately sidestepped in the previous chapter, will be given here. The con-
cepts of magnetic moments and dipole will also be considered.

Furthermore, we will consider magnetic fields in material media, as opposed to the
magnetic fields in vacuum or free space examined in the previous chapter. The results of
the preceding chapter need only some modification to account for the presence of materi-
als in a magnetic field. Further discussions will cover inductors, inductances, magnetic
energy, and magnetic circuits.

8.2 FORCES DUE TO MAGNETIC FIELDS

There are at least three ways in which force due to magnetic fields can be experienced. The
force can be (a) due to a moving charged particle in a B field, (b) on a current element in an
external B field, or (c) between two current elements.

304
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8.2 FORCES DUE TO MAGNETIC FIELDS 305

A. Force on a Charged Particle

According to our discussion in Chapter 4, the electric force Fe on a stationary or moving
electric charge Q in an electric field is given by Coulomb's experimental law and is related
to the electric field intensity E as

Fe = QE (8.1)

This shows that if Q is positive, Fe and E have the same direction.
A magnetic field can exert force only on a moving charge. From experiments, it is

found that the magnetic force Fm experienced by a charge Q moving with a velocity u in a
magnetic field B is

Fm = Qn X B (8.2)

This clearly shows that Fm is perpendicular to both u and B.
From eqs. (8.1) and (8.2), a comparison between the electric force ¥e and the magnetic

force Fm can be made. Fe is independent of the velocity of the charge and can perform
work on the charge and change its kinetic energy. Unlike Fe, Fm depends on the charge ve-
locity and is normal to it. Fm cannot perform work because it is at right angles to the direc-
tion of motion of the charge (Fm • d\ = 0); it does not cause an increase in kinetic energy
of the charge. The magnitude of Fm is generally small compared to Fe except at high ve-
locities.

For a moving charge Q in the presence of both electric and magnetic fields, the total
force on the charge is given by

F = F + F

or

F = g(E + u X B) (8.3)

This is known as the Lorentz force equation.1 It relates mechanical force to electrical
force. If the mass of the charged particle moving in E and B fields is m, by Newton's
second law of motion.

du
= m — = (8.4)

The solution to this equation is important in determining the motion of charged particles in
E and B fields. We should bear in mind that in such fields, energy transfer can be only by
means of the electric field. A summary on the force exerted on a charged particle is given
in Table 8.1.

Since eq. (8.2) is closely parallel to eq. (8.1), which defines the electric field, some
authors and instructors prefer to begin their discussions on magnetostatics from eq. (8.2)
just as discussions on electrostatics usually begin with Coulomb's force law.

After Hendrik Lorentz (1853-1928), who first applied the equation to electric field motion.
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