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is associated with Maxwell's equations. Also the equation of continuity

V • J = - — (9.29)
dt

is implicit in Maxwell's equations. The concepts of linearity, isotropy, and homogeneity of
a material medium still apply for time-varying fields; in a linear, homogeneous, and
isotropic medium characterized by a, e, and fi, the constitutive relations

D = eE = eoE + P

B = ixH = /no(H + M)

J = CTE + pvu

hold for time-varying fields. Consequently, the boundary conditions

Eu = E2t or (Ej - E2) X anl2 = 0

# u ~ H2t = K or (H, - H2) X anl2 = K

Din - D2n = p, or (D, - D2) • an l2 = p,

Bm - B2n = 0 or (B2 - B,) • aBl2 = 0

(9.30a)

(9.30b)

(9.30c)

(9.31a)

(9.31b)

(9.31c)

(9.31d)

remain valid for time-varying fields. However, for a perfect conductor (a — °°) in a time-
varying field,

and hence,

E = 0, H = 0, J = 0

BB = 0, E, = 0

(9.32)

(9.33)

For a perfect dielectric (a — 0), eq. (9.31) holds except that K = 0. Though eqs. (9.28) to
(9.33) are not Maxwell's equations, they are associated with them.

To complete this summary section, we present a structure linking the various poten-
tials and vector fields of the electric and magnetic fields in Figure 9.11. This electromag-
netic flow diagram helps with the visualization of the basic relationships between field
quantities. It also shows that it is usually possible to find alternative formulations, for a
given problem, in a relatively simple manner. It should be noted that in Figures 9.10(b) and
(c), we introduce pm as the free magnetic density (similar to pv), which is, of course, zero,
Ae as the magnetic current density (analogous to J). Using terms from stress analysis, the
principal relationships are typified as:

(a) compatibility equations

V • B = pm = 0 (9.34)
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386 • Maxwell's Eolations

^ -v«v

(a)

Vx—Vx 0
Vx ' Vx

V-'

(b) (c)

Figure 9.11 Electromagnetic flow diagram showing the relationship between the potentials
and vector fields: (a) electrostatic system, (b) magnetostatic system, (c) electromagnetic
system. [Adapted with permission from IEE Publishing Dept.]

and

(b) constitutive equations

and

(c) equilibrium equations

and

B = ,uH

D = eE

V • D = Pv

dt

Ke
rn

el
 fo

r P
DF 

Sp
lit 

& 
M

er
ge

 D
em

o



9.6 TIME-VARYING POTENTIALS 387

9.6 TIME-VARYING POTENTIALS

For static EM fields, we obtained the electric scalar potential as

pvdv

and the magnetic vector potential as

V =

A =

AireR

fiJ dv

4wR

(9.40)

(9.41)

We would like to examine what happens to these potentials when the fields are time
varying. Recall that A was defined from the fact that V • B = 0, which still holds for time-
varying fields. Hence the relation

B = V X A (9.42)

holds for time-varying situations. Combining Faraday's law in eq. (9.8) with eq. (9.42) gives

V X E = (V X A) (9.43a)

or

V X | E + - | =
dt

(9.43b)

Since the curl of the gradient of a scalar field is identically zero (see Practice Exercise
3.10), the solution to eq. (9.43b) is

dt

or

dt

(9.44)

(9.45)

From eqs. (9.42) and (9.45), we can determine the vector fields B and E provided that the
potentials A and V are known. However, we still need to find some expressions for A and
V similar to those in eqs. (9.40) and (9.41) that are suitable for time-varying fields.

From Table 9.1 or eq. (9.38) we know that V • D = pv is valid for time-varying condi-
tions. By taking the divergence of eq. (9.45) and making use of eqs. (9.37) and (9.38), we
obtain

V - E = — = - V 2 V - — ( V - A )
e dt
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388 Maxwell's Equations

or

VV + ( V A )
dt e

Taking the curl of eq. (9.42) and incorporating eqs. (9.23) and (9.45) results in

VX V X A = uj + e/n — ( -VV
dt V dt

dV

(9.46)

where D = sE and B = fiH have been assumed. By applying the vector identity

V X V X A = V(V • A) - V2A

to eq. (9.47),

V2A - V(V • A) = -f + \dt

d2A
—r-
dt2

(9.47)

(9.48)

(9.49)

A vector field is uniquely defined when its curl and divergence are specified. The curl of A
has been specified by eq. (9.42); for reasons that will be obvious shortly, we may choose
the divergence of A as

V • A = -J
dV_

dt
(9.50)

This choice relates A and V and it is called the Lorentz condition for potentials. We had this
in mind when we chose V • A = 0 for magnetostatic fields in eq. (7.59). By imposing the
Lorentz condition of eq. (9.50), eqs. (9.46) and (9.49), respectively, become

(9.51)

and

2

V2A JUS

d2V

dt2

a2
 A

dt2

Pv
e

y

/xj (9.52)

which are wave equations to be discussed in the next chapter. The reason for choosing the
Lorentz condition becomes obvious as we examine eqs. (9.51) and (9.52). It uncouples
eqs. (9.46) and (9.49) and also produces a symmetry between eqs. (9.51) and (9.52). It can
be shown that the Lorentz condition can be obtained from the continuity equation; there-
fore, our choice of eq. (9.50) is not arbitrary. Notice that eqs. (6.4) and (7.60) are special
static cases of eqs. (9.51) and (9.52), respectively. In other words, potentials V and A
satisfy Poisson's equations for time-varying conditions. Just as eqs. (9.40) and (9.41) are
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9.7 TIME-HARMONIC FIELDS 389

the solutions, or the integral forms of eqs. (6.4) and (7.60), it can be shown that the solu-
tions5 to eqs. (9.51) and (9.52) are

V =
[P.] dv

A-KSR

and

A =
A-KR

(9.53)

(9.54)

The term [pv] (or [J]) means that the time t in pv(x, y, z, t) [or J(x, y, z, t)] is replaced by the
retarded time t' given by

(9.55)

where R = |r — r ' | is the distance between the source point r ' and the observation point r
and

1
u = (9.56)

/xe

is the velocity of wave propagation. In free space, u = c — 3 X 1 0 m/s is the speed of
light in a vacuum. Potentials V and A in eqs. (9.53) and (9.54) are, respectively, called the
retarded electric scalar potential and the retarded magnetic vector potential. Given pv and
J, V and A can be determined using eqs. (9.53) and (9.54); from V and A, E and B can be
determined using eqs. (9.45) and (9.42), respectively.

9.7 TIME-HARMONIC FIELDS

So far, our time dependence of EM fields has been arbitrary. To be specific, we shall
assume that the fields are time harmonic.

A time-harmonic field is one thai varies periodically or sinusoidally wiih time.

Not only is sinusoidal analysis of practical value, it can be extended to most waveforms by
Fourier transform techniques. Sinusoids are easily expressed in phasors, which are more
convenient to work with. Before applying phasors to EM fields, it is worthwhile to have a
brief review of the concept of phasor.

Aphasor z is a complex number that can be written as

z = x + jy = r (9.57)

1983, pp. 291-292.
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390 Maxwell's Equations

or
„ = r „)<$> == r e = r (cos <j> + j sin - (9.58)

where j = V — 1, x is the real part of z, y is the imaginary part of z, r is the magnitude of
z, given by

r —

and cj> is the phase of z, given by

= tan'1 l

(9.59)

(9.60)

Here x, y, z, r, and 0 should not be mistaken as the coordinate variables although they
look similar (different letters could have been used but it is hard to find better ones). The
phasor z can be represented in rectangular form as z = x + jy or in polar form as
z = r [§_ = r e'^. The two forms of representing z are related in eqs. (9.57) to (9.60) and
illustrated in Figure 9.12. Addition and subtraction of phasors are better performed in rec-
tangular form; multiplication and division are better done in polar form.

Given complex numbers

z = x + jy = r[$_, z, = x, + jy, = r, /

the following basic properties should be noted.

Addition:

Subtraction:

Multiplication:

Division:

x2)

x2)

and z2 = x2 + jy2 = r2 /<j>2

y2) (9.61a)

- y2) (9.61b)

(9.61c)

(9.61d)

lm

co rad/s

Figure 9.12 Representation of a phasor z = x + jy
r /<t>.

•Re
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9.7 TIME-HARMONIC FIELDS H 391

Square Root:

Complex Conjugate:

Z = Vr

Z* = x — jy = r/—<j> == re

Other properties of complex numbers can be found in Appendix A.2.
To introduce the time element, we let

(9.61e)

(9.61f)

(9.62)

where 6 may be a function of time or space coordinates or a constant. The real (Re) and
imaginary (Im) parts of

= rejeeJo"

are, respectively, given by

and

Re (rej<t>) = r cos (ut + 0)

Im {rei4>) = r sin (art + 0)

(9.63)

(9.64a)

(9.64b)

Thus a sinusoidal current 7(0 = 7O cos(wt + 0), for example, equals the real part of
Ioe

jeeM. The current 7'(0 = h sin(co? + 0), which is the imaginary part of Ioe
]ee]01t, can

also be represented as the real part of Ioe
jeeju"e~j90° because sin a = cos(a - 90°).

However, in performing our mathematical operations, we must be consistent in our use of
either the real part or the imaginary part of a quantity but not both at the same time.

The complex term Ioe
je, which results from dropping the time factor ejo" in 7(0, is

called the phasor current, denoted by 7̂ ; that is,

]s = io(,J» = 70 / 0 (9.65)

where the subscript s denotes the phasor form of 7(0- Thus 7(0 = 70 cos(cof + 0), the in-
stantaneous form, can be expressed as

= Re (9.66)

In general, a phasor could be scalar or vector. If a vector A(*, y, z, t) is a time-harmonic
field, the phasor form of A is As(x, y, z); the two quantities are related as

A = Re (Xse
Jo")

For example, if A = Ao cos (ut — j3x) ay, we can write A as

A = Re (Aoe-j0x a / u ' )

Comparing this with eq. (9.67) indicates that the phasor form of A is

(9.67)

(9.68)

**-s AQ€ (9.69)
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392 M Maxwell's Equations

Notice from eq. (9.67) that

(9.70)
= Re (/«A/M()

showing that taking the time derivative of the instantaneous quantity is equivalent to mul-
tiplying its phasor form byyco. That is,

<3A

Similarly,

(9.71)

(9.72)

Note that the real part is chosen in eq. (9.67) as in circuit analysis; the imaginary part
could equally have been chosen. Also notice the basic difference between the instanta-
neous form A(JC, y, z, t) and its phasor form As(x, y, z); the former is time dependent and
real whereas the latter is time invariant and generally complex. It is easier to work with Â
and obtain A from As whenever necessary using eq. (9.67).

We shall now apply the phasor concept to time-varying EM fields. The fields quanti-
ties E(x, y, z, t), D(x, y, z, t), H(x, y, z, t), B(x, y, z, t), J(x, y, z, t), and pv(x, y, z, i) and their
derivatives can be expressed in phasor form using eqs. (9.67) and (9.71). In phasor form,
Maxwell's equations for time-harmonic EM fields in a linear, isotropic, and homogeneous
medium are presented in Table 9.2. From Table 9.2, note that the time factor eJa" disappears
because it is associated with every term and therefore factors out, resulting in time-
independent equations. Herein lies the justification for using phasors; the time factor can
be suppressed in our analysis of time-harmonic fields and inserted when necessary. Also
note that in Table 9.2, the time factor e'01' has been assumed. It is equally possible to have
assumed the time factor e~ja", in which case we would need to replace every y in Table 9.2
with —j.

TABLE 9.2 Time-Harmonic Maxwell's Equations
Assuming Time Factor e'""

Point Form Integral Form

Dv • dS = I pvs dv

B5 • dS = 0

V • D v = />„.,

V • B.v = 0

V X E s = -joiB, <k E s • d\ = -ju> I Bs • dS

V X H, = Js + juDs §Hs-dl= [ (J s + joiDs) • dS
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9.7 TIME-HARMONIC FIELDS 393

EXAMPLE 9.5
Evaluate the complex numbers

7(3 - ;4)*
(a) z, =

( -1
11/2

Solution:

(a) This can be solved in two ways: working with z in rectangular form or polar form.

Method 1: (working in rectangular form):
Let

_ Z3Z4

where

£3 =j

z,4 = (3 - j4)* = the complex conjugate of (3 - j4)
= 3 + ;4

(To find the complex conjugate of a complex number, simply replace every) with —j.)

z5 = - 1 +76

and

Hence,

z3z4 = j4) = - 4

and

= (-1 + j6)(3 + ;4) = - 3 - ;4
= -27+ ;14

- 4 + ;3

- 24

*"' - 2 7 + 7 I 4

Multiplying and dividing z\ by -27 - j\4 (rationalization), we have

(-4 + j3)(-27 - yi4) _ 150 -J25
Zl ~ (-27 +yl4)(-27 -j'14) 272 + 142

= 0.1622 -;0.027 = 0.1644 / - 9.46°

Method 2: (working in polar form):

z3=j= 1/90°

z4 = (3 - j4)* = 5 /-53.130)* = 5 /53.13°
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394 • Maxwell's Equations

Hence,

as obtained before,

(b) Let

where

and

Hence

z5 = ("I +j6) = V37 /99.46°

zb = (2 + jf = (V5 /26.56°)2 = 5 /53.130

(1 /90°)(5 /53.130)

and

(V37 /99.46°)(5 /53.130)

1 /90° - 99.46° = 0.1644 /-9.46°
V37

= 0.1622 - 70.027

1/2

Zs

Z7=l+j= V2/45°

= 4 -78 = 4V5/-63.4O

V2 /45° V2

4V5/-63.40 4V5
0.1581 7108.4°

/45° 63.4°

z2 = V0.1581 /108.472
= 0.3976 754.2°

PRACTICE EXERCISE 9.5

Evaluate these complex numbers:

(b) 6 /W_ + ;5 - 3 + ejn

Answer: (a) 0.24 + j0.32, (b) 2.903 + J8.707.

Ke
rn

el
 fo

r P
DF 

Sp
lit 

& 
M

er
ge

 D
em

o



9.7 TIME-HARMONIC FIELDS • 395

EXAMPLE 9.6
Given that A = 10 cos (108? - 10* + 60°) az and Bs = (20//) a, + 10 ej2"B ay, express
A in phasor form and B^ in instantaneous form.

Solution:

where u = 10 . Hence

A = Re[10e'M~1 0 A H

If

A = Re [\0eJ(bU ~lw az e*"] = Re ( A , O

A, = ]0ej

90
e / 2" / 3a = - jB, = — a , + 10e / 2" / 3ay = - j20a v

2 / 2 / 3

B = Re (B.e-"0')
= Re [20ej(w("7r/2)ax + lO^'(w'+2TJ[/3)a),]

/ 2TT*\
= 20 cos (art - 7r/2)a.v + 10 cos I wf + — - lav

= 20 sin o)t ax + 10 cos —r— jav

PRACTICE EXERCISE 9.6

If P = 2 sin (]Qt + x - TT/4) av and Qs = ej*(ax - a.) sin Try, determine the phasor
form of P and the instantaneous form of Qv.

Answer: 2eju" Jx/4)av, sin x y cos(wf + jc)(a,. - ar).

EXAMPLE 9.7
The electric field and magnetic field in free space are given by

E = — cos (l06f + /3z) a* V/m
P

H = —^ cos (l06f + |3z) a0 A/m

Express these in phasor form and determine the constants Ho and /3 such that the fields
satisfy Maxwell's equations.
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396 • Maxwell's Equations

Solution:

The instantaneous forms of E and H are written as

E = Re (Ese
Jal), H = Re (Hse

J"')

where co = 106 and phasors Es and Hs are given by

50 H
E = —' e^a H = — e^za

p *' p "
For free space, pv = 0, a = 0, e = eo, and ft = fio so Maxwell's equations become

V-B = |ioV-H = 0-> V-Ha: = 0

dE

dt
> V X H S = j

•iii

V X E = -fio —

(9.7.1)

(9.7.2)

(9.7.3)

(9.7.4)

(9.7.5)

(9.7.6)

Substituting eq. (9.7.2) into eqs. (9.7.3) and (9.7.4), it is readily verified that two
Maxwell's equations are satisfied; that is,

Now

V X Hs = V X
P V P

Substituting eqs. (9.7.2) and (9.7.7) into eq. (9.7.5), we have

JHOI3 mz . 50 M,

(9.7.7i

or

//o/3 = 50 a)eo

Similarly, substituting eq. (9.7.2) into (9.7.6) gives

P

or

(9.7.8)

(9.7.9)
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9.7 TIME-HARMONIC FIELDS 397

Multiplying eq. (9.7.8) with eq. (9.7.9) yields

or

Mo

50
Ho = ±50V sJno = ± 7 ^ " = ± 0 - 1 3 2 6

Dividing eq. (9.7.8) by eq. (9.7.9), we get

I32 = o;2/x0e0

or

0 = ± aVp,

= ±3.33 X 10

10"

3 X 10s

- 3

In view of eq. (9.7.8), Ho = 0.1326, & = 3.33 X 10~3 or Ho = -0.1326, j3 =
— 3.33 X 10~3; only these will satisfy Maxwell's four equations.

PRACTICE EXERCISE 9.7

In air, E = ^— cos (6 X 107r - /3r) a* V/m.
r

Find j3 and H.

Answer: 0.2 rad/m, r cos 6 sin (6 X 107? - 0.2r) ar — sin S X
llzr2 1207rr

cos (6 X 107f - 0.2r) % A/m.

EXAMPLE 9.8
In a medium characterized by a = 0, \x = /xo, eo, and

E = 20 sin (108f - j3z) a7 V/m

calculate /8 and H.

Solution:

This problem can be solved directly in time domain or using phasors. As in the previous
example, we find 13 and H by making E and H satisfy Maxwell's four equations.

Method 1 (time domain): Let us solve this problem the harder way—in time domain. It
is evident that Gauss's law for electric fields is satisfied; that is,

dy

Ke
rn

el
 fo

r P
DF 

Sp
lit 

& 
M

er
ge

 D
em

o



398 • Maxwell's Equations

From Faraday's law,

V X E = - /

But

V X E =

dH
dt

A A A
dx dy dz
0 Ey 0

H = - - I (V X E)dt

dEy dEy

dz dx

Hence,

= 20/3 cos (108f - (3z) ax + 0

H = cos (108r - pz) dtax

^ s i - I3z)ax (9.8.1)

It is readily verified that

dx

showing that Gauss's law for magnetic fields is satisfied. Lastly, from Ampere's law

V X H = CTE + £
1

E = - | (V X H) (9.8.2)

because a = 0.
But

V X H =
A A A
dx dy dz
Hr 0 0

dHx dHx

cos(108? - $z)ay + 0

where H in eq. (9.8.1) has been substituted. Thus eq. (9.8.2) becomes

20/S2

E = cos(10 8r- (3z)dtay

2O/32

•sin(108f -

Comparing this with the given E, we have

= 20
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9.7 TIME-HARMONIC FIELDS • 399

or

= ± 108Vtis = ± 10SVIXO • 4eo = ±
108(2) 108(2)

3 X 10B

From eq. (9.8.1),

or

1 / 2z\
H = ± — sin 108?±— axA/m

3TT V 3/

Method 2 (using phasors):

E = Im ( £ y ) -> E, = av

where co =
Again

10°.

V X E, =

dy

• -> " H, =
V X Es

or

20/3 fr

Notice that V • H, = 0 is satisfied.

V X Hs = ji E, =
V X H,

jus

Substituting H^ in eq. (9.8.4) into eq. (9.8.5) gives

2
co /xe

Comparing this with the given Es in eq. (9.8.3), we have

^
co /xe

(9.8.3)

(9.8.4)

(9.8.5)
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400 Maxwell's Equations

or

as obtained before. From eq. (9.8.4),

„ ^ 2 0 ( 2 / 3 ) ^

10 8 (4T X 10 ') 3TT

H = Im (H/" 1 )

= ± — sin (108f ± Qz) ax A/m
3TT

as obtained before. It should be noticed that working with phasors provides a considerable
simplification compared with working directly in time domain. Also, notice that we have
used

A = Im (Ase
jat)

because the given E is in sine form and not cosine. We could have used

A = Re (Ase
jo")

in which case sine is expressed in terms of cosine and eq. (9.8.3) would be

E = 20 cos (108? - & - 90°) av = Re (Ese
M)

or

and we follow the same procedure.

PRACTICE EXERCISE 9.8

A medium is characterized by a = 0, n = 2/*,, and s = 5eo. If H = 2
cos {(jit — 3y) a_, A/m, calculate us and E.

Answer: 2.846 X l(f rad/s, -476.8 cos (2.846 X 108f - 3v) a, V/m.

SUMMARY 1. In this chapter, we have introduced two fundamental concepts: electromotive force
(emf), based on Faraday's experiments, and displacement current, which resulted from
Maxwell's hypothesis. These concepts call for modifications in Maxwell's curl equa-
tions obtained for static EM fields to accommodate the time dependence of the fields.

2. Faraday's law states that the induced emf is given by (N = 1)

dt
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REVIEW QUESTIONS U 401

For transformer emf, Vemf = — ,

and for motional emf, Vemf = I (u X B) • d\.

3. The displacement current

h = ( h • dS

dD
where id = (displacement current density), is a modification to Ampere's circuit

dt

law. This modification attributed to Maxwell predicted electromagnetic waves several
years before it was verified experimentally by Hertz.

4. In differential form, Maxwell's equations for dynamic fields are:

V • D = Pv

V-B = 0

dt

V X H J +

dt

Each differential equation has its integral counterpart (see Tables 9.1 and 9.2) that can
be derived from the differential form using Stokes's or divergence theorem. Any EM
field must satisfy the four Maxwell's equations simultaneously.

5. Time-varying electric scalar potential V(x, y, z, t) and magnetic vector potential
A(JC, y, z, t) are shown to satisfy wave equations if Lorentz's condition is assumed.

6. Time-harmonic fields are those that vary sinusoidally with time. They are easily ex-
pressed in phasors, which are more convenient to work with. Using the cosine refer-
ence, the instantaneous vector quantity A(JC, y, z, t) is related to its phasor form
As(x, y, z) according to

A(x, y, z, t) = Re [AX*, y, z) eM]

9.1 The flux through each turn of a 100-turn coil is (t3 — 2t) mWb^ where t is in seconds.
The induced emf at t = 2 s is

(a) IV

(b) - 1 V

(c) 4mV

(d) 0.4 V
(e) -0.4 V
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402 B Maxwell's Equations

, Increasing B

(a)

Decreasing B
Figure 9.13 For Review Question 9.2.

(b)

• Decreasing B Increasing B

(d)

9.2 Assuming that each loop is stationary and the time-varying magnetic field B induces
current /, which of the configurations in Figure 9.13 are incorrect?

9.3 Two conducting coils 1 and 2 (identical except that 2 is split) are placed in a uniform mag-
netic field that decreases at a constant rate as in Figure 9.14. If the plane of the coils is per-
pendicular to the field lines, which of the following statements is true?

(a) An emf is induced in both coils.

(b) An emf is induced in split coil 2.

(c) Equal joule heating occurs in both coils.

(d) Joule heating does not occur in either coil.

9.4 A loop is rotating about the y-axis in a magnetic field B = Ba sin wt ax Wb/m2. The
voltage induced in the loop is due to

(a) Motional emf

(b) Transformer emf

(c) A combination of motional and transformer emf

(d) None of the above

9.5 A rectangular loop is placed in the time-varying magnetic field B = 0.2 cos
150irfaz Wb/m as shown in Figure 9.15. Vx is not equal to V2.

(a) True (b) False

Figure 9.14 For Review Question 9.3.
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©

©

©

0 B Figure 9.15 For Review Question 9.5 and Problem 9.10.

9.6 The concept of displacement current was a major contribution attributed to

(a) Faraday

(b) Lenz

(c) Maxwell

(d) Lorentz

(e) Your professor

9.7 Identify which of the following expressions are not Maxwell's equations for time-varying
fields:

(a)

(b) V • D = Pv

(d) 4> H • d\ =

(e) i B • dS = 0

+ e ) • dS
dt J

9.8 An EM field is said to be nonexistent or not Maxwellian if it fails to satisfy Maxwell's
equations and the wave equations derived from them. Which of the following fields in
free space are not Maxwellian?

(a) H = cos x cos 106fav

(b) E = 100 cos cot ax

(c) D = e"10> 'sin(105 - lOy) az

(d) B = 0.4 sin 104fa.

(e) H = 10 cos ( 103/ - — | a r

sinfl
(f) E = cos i

V/ioeo) i

(g) B = (1 - p ) sin u>faz
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404 Maxwell's Equations

9.9 Which of the following statements is not true of a phasor?

(a) It may be a scalar or a vector.

(b) It is a time-dependent quantity.
(c) A phasor Vs may be represented as Vo / 0 or Voe

je where Vo = | Vs

(d) It is a complex quantity.

9.10 If Ej = 10 ej4x ay, which of these is not a correct representation of E?

(a) Re (Ese
jut)

(b) Re (Ese-j"')

(c) Im (E.^"")
(d) 10 cos (wf + jAx) ay

(e) 10 sin (ut + Ax) ay

Answers: 9.1b, 9.2b, d, 9.3a, 9.4c, 9.5a, 9.6c, 9.7a, b, d, g, 9.8b, 9.9a,c, 9.10d.

PRORI FMS ' '* ^ conducting circular loop of radius 20 cm lies in the z = 0 plane in a magnetic field
B = 10 cos 377? az mWb/m2. Calculate the induced voltage in the loop.

9.2 A rod of length € rotates about the z-axis with an angular velocity w. If B = Boaz, calcu-
late the voltage induced on the conductor.

9.3 A 30-cm by 40-cm rectangular loop rotates at 130 rad/s in a magnetic field 0.06 Wb/m2

normal to the axis of rotation. If the loop has 50 turns, determine the induced voltage in
the loop.

9.4 Figure 9.16 shows a conducting loop of area 20 cm2 and resistance 4 fl. If B = 40 cos
104faz mWb/m2, find the induced current in the loop and indicate its direction.

9.5 Find the induced emf in the V-shaped loop of Figure 9.17. (a) Take B = 0.1a, Wb/m2

and u = 2ax m/s and assume that the sliding rod starts at the origin when t = 0.
(b) Repeat part (a) if B = 0.5xaz Wb/m2.

Figure 9.16 For Problem 9.4.
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PROBLEMS • 405

Figure 9.17 For Problem 9.5.

©

B

0 /

/V
©

©

0

-»- u

©

0

©

*9.6 A square loop of side a recedes with a uniform velocity «oav from an infinitely long fila-
ment carrying current / along az as shown in Figure 9.18. Assuming that p = po at time
t = 0, show that the emf induced in the loop at t > 0 is

Vrmf = uoa
2vp{p + a)

*9.7 A conducting rod moves with a constant velocity of 3az m/s parallel to a long straight wire
carrying current 15 A as in Figure 9.19. Calculate the emf induced in the rod and state
which end is at higher potential.

*9.8 A conducting bar is connected via flexible leads to a pair of rails in a magnetic field
B = 6 cos lOf ax mWb/m2 as in Figure 9.20. If the z-axis is the equilibrium position of
the bar and its velocity is 2 cos lOf ay m/s, find the voltage induced in it.

9.9 A car travels at 120 km/hr. If the earth's magnetic field is 4.3 X 10"5 Wb/m2, find the
induced voltage in the car bumper of length 1.6 m. Assume that the angle between the
earth magnetic field and the normal to the car is 65°.

*9.10 If the area of the loop in Figure 9.15 is 10 cm2, calculate Vx and V2.

Figure 9.18 For Problem 9.6.
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406 Maxwell's Equations

15 A

A

20 cm

u

t
40 cm

Figure 9.19 For Problem 9.7.

9.11 As portrayed in Figure 9.21, a bar magnet is thrust toward the center of a coil of 10 turns
and resistance 15 fl. If the magnetic flux through the coil changes from 0.45 Wb to
0.64 Wb in 0.02 s, what is the magnitude and direction (as viewed from the side near the
magnet) of the induced current?

9.12 The cross section of a homopolar generator disk is shown in Figure 9.22. The disk has
inner radius p] = 2 cm and outer radius p2 = 10 cm and rotates in a uniform magnetic
field 15 mWb/m2 at a speed of 60 rad/s. Calculate the induced voltage.

9.13 A 50-V voltage generator at 20 MHz is connected to the plates of an air dielectric parallel-
plate capacitor with plate area 2.8 cm2 and separation distance 0.2 mm. Find the
maximum value of displacement current density and displacement current.

9.14 The ratio JIJd (conduction current density to displacement current density) is very impor-
tant at high frequencies. Calculate the ratio at 1 GHz for:

(a) distilled water (p = ,uo, e = 81e0, a = 2 X 10~3 S/m)

(b) sea water (p, = no, e = 81eo, a = 25 S/m)

(c) limestone {p. = ixo, e = 5eo, j = 2 X 10~4 S/m)

9.15 Assuming that sea water has fi = fxa, e = 81e0, a = 20 S/m, determine the frequency at
which the conduction current density is 10 times the displacement current density in mag-
nitude.

Figure 9.20 For Problem 9.8.
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PROBLEMS

Figure 9.21 For Problem 9.11.

407

9.16 A conductor with cross-sectional area of 10 cm carries a conduction current 0.2 sin
l09t mA. Given that a = 2.5 X 106 S/m and e r = 6, calculate the magnitude of the dis-
placement current density.

9.17 (a) Write Maxwell's equations for a linear, homogeneous medium in terms of Es and YLS

only assuming the time factor e~Ju".

(b) In Cartesian coordinates, write the point form of Maxwell's equations in Table 9.2 as
eight scalar equations.

9.18 Show that in a source-free region (J = 0, pv = 0), Maxwell's equations can be reduced
to two. Identify the two all-embracing equations.

9.19 In a linear homogeneous and isotropic conductor, show that the charge density pv satisfies

— + -pv = 0
dt e

9.20 Assuming a source-free region, derive the diffusion equation

at

shaft

brush

copper disk

Figure 9.22 For Problem 9.12.
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408 'axwell's Eolations

9.21 In a certain region,

J = (2yax + xzay + z3az) sin 104r A/m

nndpvifpv(x,y,0,t) = 0.

9.22 In a charge-free region for which a = 0, e = eoer, and /* = /xo,

H = 5 c o s ( 1 0 u ? - 4y)a,A/m

find: (a) Jd and D, (b) er.

9.23 In a certain region with a = 0, /x = yuo, and e = 6.25a0, the magnetic field of an EM
wave is

H = 0.6 cos I3x cos 108r a, A/m

Find /? and the corresponding E using Maxwell's equations.

*9.24 In a nonmagnetic medium,

E = 50 cos(109r - Sx)&y + 40 sin(109? - Sx)az V/m

find the dielectric constant er and the corresponding H.

9.25 Check whether the following fields are genuine EM fields, i.e., they satisfy Maxwell's
equations. Assume that the fields exist in charge-free regions.

(a) A = 40 sin(co? + 10r)a2

(b) B = — cos(cor - 2p)a6
P

(c) C = f 3 p 2 cot <j>ap H a 0 j sin u>t

(d) D = — sin 8 sm(wt — 5r)aer

**9.26 Given the total electromagnetic energy

W = | (E • D + H • B) dv

show from Maxwell's equations that

dW
dt = - f (EXH)-(iS- E • J dv

9.27 In free space,

H = p(sin 4>ap + 2 cos ^ a j cos 4 X 10 t A/m

find id and E.
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PROBLEMS 409

9.28 An antenna radiates in free space and

12 sin 6
H = cos(2ir X l(fr - 0r)ag mA/m

find the corresponding E in terms of /3.

*9.29 The electric field in air is given by E = pte~p~\ V/m; find B and J.

**9.30 In free space (pv = 0, J = 0). Show that

A = -£2_ ( c o s e a r _ s i n e ajeJ*'-"*
A-wr

satisfies the wave equation in eq. (9.52). Find the corresponding V. Take c as the speed of
light in free space.

9.31 Evaluate the following complex numbers and express your answers in polar form:

(a) (4 /30° - 10/50°)1/2

1 +J2
(b)

(c)

(d)

6 + 7 8 - 7
(3 + j4)2

12 - jl + ( -6 +;10)*

(3.6/-200°)1 /2

9.32 Write the following time-harmonic fields as phasors:

(a) E = 4 cos(oit - 3x - 10°) ay - sin(cof + 3x + 20°) B;,

sin
(b) H = cos(ut - 5r)ag

r
(c) J = 6e~3x sin(ojf — 2x)ay + 10e~*cos(w? —

9.33 Express the following phasors in their instantaneous forms:

(a) A, = (4 - 3j)e-j0xay

0 » B , = ^ - * %

(c) Cs = —7 (1 + j2)e~j<t> sin 0 a 0
r

9.34 Given A = 4 sin wtax + 3 cos wtay and Bs = j\0ze~jzax, express A in phase form and
B, in instantaneous form.

9.35 Show that in a linear homogeneous, isotropic source-free region, both Es and Hs must
satisfy the wave equation

, = 0

where y2 = a>2/xe and Â  = E,, or Hs.
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Chapter 10

ELECTROMAGNETIC WAVE
PROPAGATION

How far you go in life depends on your being tender with the young, compas-
sionate with the aged, sympathetic with the striving, and tolerant of the weak and
the strong. Because someday in life you will have been all of these.

—GEORGE W. CARVER

10.1 INTRODUCTION

Our first application of Maxwell's equations will be in relation to electromagnetic wave
propagation. The existence of EM waves, predicted by Maxwell's equations, was first in-
vestigated by Heinrich Hertz. After several calculations and experiments Hertz succeeded
in generating and detecting radio waves, which are sometimes called Hertzian waves in his
honor.

In general, waves are means of transporting energy or information.

Typical examples of EM waves include radio waves, TV signals, radar beams, and light
rays. All forms of EM energy share three fundamental characteristics: they all travel at
high velocity; in traveling, they assume the properties of waves; and they radiate outward
from a source, without benefit of any discernible physical vehicles. The problem of radia-
tion will be addressed in Chapter 13.

In this chapter, our major goal is to solve Maxwell's equations and derive EM wave
motion in the following media:

1. Free space (<T = 0, s = eo, JX = /xo)
2. Lossless dielectrics (a = 0, e = e,so, JX = jxrjxo, or a <sC aie)
3. Lossy dielectrics {a # 0, e = E,EO, fx = fxrixo)
4. Good conductors (a — °°, e = eo, JX = ixrfxo, or a Ŝ> we)

where w is the angular frequency of the wave. Case 3, for lossy dielectrics, is the most
general case and will be considered first. Once this general case is solved, we simply
derive other cases (1,2, and 4) from it as special cases by changing the values of a, e, and
ix. However, before we consider wave motion in those different media, it is appropriate that
we study the characteristics of waves in general. This is important for proper understand-

410
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10.2 WAVES IN GENERAL 411

ing of EM waves. The reader who is conversant with the concept of waves may skip
Section 10.2. Power considerations, reflection, and transmission between two different
media will be discussed later in the chapter.

10.2 WAVES IN GENERAL

A clear understanding of EM wave propagation depends on a grasp of what waves are in
general.

A wave is a function of both space and time.

Wave motion occurs when a disturbance at point A, at time to, is related to what happens at
point B, at time t > t0. A wave equation, as exemplified by eqs. (9.51) and (9.52), is a
partial differential equation of the second order. In one dimension, a scalar wave equation
takes the form of

d2E 2 d2E
r- - U r- = 0

dt2 dz2
(10.1)

where u is the wave velocity. Equation (10.1) is a special case of eq. (9.51) in which the
medium is source free (pv, = 0, J = 0). It can be solved by following procedure, similar to
that in Example 6.5. Its solutions are of the form

or

E =f(z~ ut)

E+ = g(z + ut)

E=f(z- ut) + g(z + ut)

(10.2a)

(10.2b)

(10.2c)

where / and g denote any function of z — ut and z + ut, respectively. Examples of such
functions include z ± ut, sin k(z ± ut), cos k(z ± ut), and eJ

k(-z±u'\ where k is a constant. It
can easily be shown that these functions all satisfy eq. (10.1).

If we particularly assume harmonic (or sinusoidal) time dependence eJ0", eq. (10.1)
becomes

d2E,
S = 0 (10.3)

where /3 = u/u and Es is the phasor form of E. The solution to eq. (10.3) is similar to
Case 3 of Example 6.5 [see eq. (6.5.12)]. With the time factor inserted, the possible solu-
tions to eq. (10.3) are

E
+ = (10.4a)

(10.4b)
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412 B Electromagnetic Wave Propagation

and

= Aei{<M"0z) + Bej(ut+fiz) (10.4c)

where A and B are real constants.
For the moment, let us consider the solution in eq. (10.4a). Taking the imaginary part

of this equation, we have

E = A sin (cof - /3z) (10.5)

This is a sine wave chosen for simplicity; a cosine wave would have resulted had we taken
the real part of eq. (10.4a). Note the following characteristics of the wave in eq. (10.5):

1. It is time harmonic because we assumed time dependence ejo" to arrive at
eq. (10.5).

2. A is called the amplitude of the wave and has the same units as E.
3. (ox - /3z) is the phase (in radians) of the wave; it depends on time t and space vari-

able z.
4. w is the angular frequency (in radians/second); 0 is the phase constant or wave

number (in radians/meter).

Due to the variation of E with both time t and space variable z, we may plot £ as a
function of t by keeping z constant and vice versa. The plots of E(z, t = constant) and
E(t, z = constant) are shown in Figure 10.1(a) and (b), respectively. From Figure 10.1(a),
we observe that the wave takes distance X to repeat itself and hence X is called the wave-
length (in meters). From Figure 10.1(b), the wave takes time T to repeat itself; conse-
quently T is known as the period (in seconds). Since it takes time T for the wave to travel
distance X at the speed u, we expect

X = uT (10.6a)

But T = l/f, where/is the frequency (the number of cycles per second) of the wave in
Hertz (Hz). Hence,

u = / X (10.6b)

Because of this fixed relationship between wavelength and frequency, one can identify the
position of a radio station within its band by either the frequency or the wavelength.
Usually the frequency is preferred. Also, because

a) = 2TT/ (10.7a)

(10.7b)

and

/
(10.7c)
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10.2 WAVES IN GENERAL 413
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Figure 10.1 Plot of E(z, t)
(b) with constant z.

(b)

• A sin(co/ - &z): (a) with constant t,

we expect from eqs. (10.6) and (10.7) that

(10.8)

Equation (10.8) shows that for every wavelength of distance traveled, a wave undergoes a
phase change of 2TT radians.

We will now show that the wave represented by eq. (10.5) is traveling with a velocity
u in the +z direction. To do this, we consider a fixed point P on the wave. We sketch
eq. (10.5) at times t = 0, 774, and 772 as in Figure 10.2. From the figure, it is evident that
as the wave advances with time, point P moves along +z direction. Point P is a point of
constant phase, therefore

ut - j3z = constant

or

dz
(10.9)
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414 Electromagnetic Wave Propagation

Figure 10.2 Plot of E(z, t) = A
sin(cot - /3z) at time (a) t = 0, (b)
t = T/4, (c) t = 772; P moves along
+z direction with velocity u.

(c) t = Tj2

which is the same as eq. (10.7b). Equation (10.9) shows that the wave travels with velocity
u in the +z direction. Similarly, it can be shown that the wave B sin (cof + (5z) in
eq. (10.4b) is traveling with velocity u in the — z direction.

In summary, we note the following:

1. A wave is a function of both time and space.
2. Though time / = 0 is arbitrarily selected as a reference for the wave, a wave is

without beginning or end.
3. A negative sign in (u>t ± /3z) is associated with a wave propagating in the +z di-

rection (forward traveling or positive-going wave) whereas a positive sign indi-
cates that a wave is traveling in the —z direction (backward traveling or negative-
going wave).

4. Since sin (~\p) = -sin ^ = sin (\j/ ± ir), whereas cos(-i/<) = cos \p,

sin (\j/ ± itl2) = ± cos \[/

sin (\p ± ir) = —sin \j/

cos (\p ± if 12) = + sin \p

cos (\j/ ± IT) = —cos \f/

(10.10a)

(10.10b)

(10.10c)

(lO.lOd)

where \p = u>t ± ffz- With eq. (10.10), any time-harmonic wave can be represented
in the form of sine or cosine.
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10.2 WAVES IN GENERAL 415

TABLE 10.1 Electromagnetic Spectrum

EM Phenomena Examples of Uses Approximate Frequency Range

Cosmic rays

Gamma rays

X-rays

Ultraviolet radiation

Visible light

Infrared radiation

Microwave waves

Radio waves

Physics, astronomy

Cancer therapy

X-ray examination

Sterilization

Human vision

Photography

Radar, microwave relays,

satellite communication

UHF television

VHF television, FM radio

Short-wave radio

AM radio

1014 GHz and above

10'°-1013GHz

108-109 GHz

106-108 GHz

105-106GHz

103-104 GHz

3-300 GHz

470-806 MHz

54-216 MHz

3-26 MHz

535-1605 kHz

A large number of frequencies visualized in numerical order constitute a spectrum.
Table 10.1 shows at what frequencies various types of energy in the EM spectrum occur.
Frequencies usable for radio communication occur near the lower end of the EM spectrum.
As frequency increases, the manifestation of EM energy becomes dangerous to human
beings.1 Microwave ovens, for example, can pose a hazard if not properly shielded. The
practical difficulties of using EM energy for communication purposes also increase as fre-
quency increases, until finally it can no longer be used. As communication methods
improve, the limit to usable frequency has been pushed higher. Today communication
satellites use frequencies near 14 GHz. This is still far below light frequencies, but in the
enclosed environment of fiber optics, light itself can be used for radio communication.2

EXAMPLE 10.1
The electric field in free space is given by

E = 50 cos (108r + &x) ay V/m

(a) Find the direction of wave propagation.

(b) Calculate /3 and the time it takes to travel a distance of A/2.

(c) Sketch the wave at t = 0, 774, and 772.

Solution:

(a) From the positive sign in (tot + /3x), we infer that the wave is propagating along
This will be confirmed in part (c) of this example.

'See March 1987 special issue of IEEE Engineering in Medicine and Biology Magazine on "Effects
of EM Radiation."
2See October 1980 issue of IEEE Proceedings on "Optical-Fiber Communications."
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416 • Electromagnetic Wave Propagation

(b) In free space, u = c.

c 3 X 10s

or

/3 = 0.3333 rad/m

If 7 is the period of the wave, it takes 7 seconds to travel a distance X at speed c. Hence to
travel a distance of X/2 will take

7 I 2ir -K „„ _
3 L 4 2

Alternatively, because the wave is traveling at the speed of light c,

X

But

or t l = -

Hence,

6TT
= 31.42 ns

2(3 X 108)

as obtained before.

(c) At t = O,Ey = 50 cos I3x

At t = 7/4, Ey = 50 cos (co • — + /3JC I = 50 cos (fix + TT/2)
\ 4co

= -50(sin)3x

At t = 7/2, EY = 50 cos ( co + 0x ) = 50 cos(/3x + it)
2co

= — 50 cos fix

Ey at r = 0, 7/4, 7/2 is plotted against x as shown in Figure 10.3. Notice that a point P (ar-
bitrarily selected) on the wave moves along — ax as f increases with time. This shows thai
the wave travels along — ax.
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10.3 WAVE PROPAGATION IN LOSSY DIELECTRICS 417

- 50 sin jix

Figure 10.3 For Example 10.1; wave
travels along — ax.

(c) t = Tl

PRACTICE EXERCISE 10.1 J

In free space, H = 0.1 cos (2 X 108/ - kx) ay A/m. Calculate

(a) k, A, and T

(b) The time tx it takes the wave to travel A/8

(c) Sketch the wave at time tx.

Answer: (a) 0.667 rad/m, 9.425 m, 31.42 ns, (b) 3.927 ns, (c) see Figure 10.4.

0.3 WAVE PROPAGATION IN LOSSY DIELECTRICS

As mentioned in Section 10.1, wave propagation in lossy dielectrics is a general case from
which wave propagation in other types of media can be derived as special cases. Therefore,
this section is foundational to the next three sections.
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418 • Electromagnetic Wave Propagation

0. 1 " >

Figure 10.4 For Practice Exercise 10.1(c).

A lossy dielectric is a medium in which an EM wave loses power as it propagates
due to poor conduction.

In other words, a lossy dielectric is a partially conducting medium (imperfect dielectric or
imperfect conductor) with a ¥= 0, as distinct from a lossless dielectric (perfect or good di-
electric) in which a = 0.

Consider a linear, isotropic, homogeneous, lossy dielectric medium that is charge free
(pv = 0). Assuming and suppressing the time factor ej"', Maxwell's equations (see Table
9.2) become

V • E, = 0

V • Hs = 0

V X Es = -ju>nHs

Taking the curl of both sides of eq. (10.13) gives

V X V X Es = -join V X H S

Applying the vector identity

VX V X A = V(V-A) - V2A

(10.11)

(10.12)

(10.13)

(10.14)

(10.15)

(10.16)

to the left-hand side of eq. (10.15) and invoking eqs. (10.11) and (10.14), we obtain

V(V/E, ) - V2ES = -j

or

V2ES - 72ES = 0 (10.17)

where

7 = j'w/̂ Cff + j (10.18)
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10.3 WAVE PROPAGATION IN LOSSY DIELECTRICS 419

and y is called the propagation constant (in per meter) of the medium. By a similar proce-
dure, it can be shown that for the H field,

V2HS - y2Ks = 0 (10.19)

Equations (10.17) and (10.19) are known as homogeneous vector Helmholtz 's equations or
simply vector wave equations. In Cartesian coordinates, eq. (10.17), for example, is equiv-
alent to three scalar wave equations, one for each component of E along ax, ay, and az.

Since y in eqs. (10.17) to (10.19) is a complex quantity, we may let

y = a + j/3

We obtain a and /3 from eqs. (10.18) and (10.20) by noting that

Re y2 = P2 - a2 = (f

and

\y2\ = 01 + a2 = ufi VV + co

From eqs. (10.21) and (10.22), we obtain

V

(10.20)

(10.21)

(10.22)

Oi =

6 =

V 2 [V

•°v 2 [V

a
cos

coe

J
2 "I

J

(10.23)

(10.24)

Without loss of generality, if we assume that the wave propagates along +az and that
Es has only an x-component, then

Es = Exs(z)ax

Substituting this into eq. (10.17) yields

(V2 - y2)Exs(z)

Hence

d2Exs(z)

(10.25)

(10.26)

or

,2
—2 - y2 \Exs(z) = 0
dz

(10.27)
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420 B Electromagnetic Wave Propagation

This is a scalar wave equation, a linear homogeneous differential equation, with solution
(see Case 2 in Example 6.5)

EJx) = Eoe'yz + E'oe
yz (10.28)

where Eo and E'o are constants. The fact that the field must be finite at infinity requires that
E'o = 0. Alternatively, because eiz denotes a wave traveling along —az whereas we assume
wave propagation along az, E'o = 0. Whichever way we look at it, E'o = 0. Inserting the
time factor ejo" into eq. (10.28) and using eq. (10.20), we obtain

Efc t) = Re aJ = Re (Eoe-azeji"'-0z)ax)

or

Efo i) = Eoe~azcos(at - j3z)ax (10.29)

A sketch of |E| at times t = 0 and t = At is portrayed in Figure 10.5, where it is evident
that E has only an x-component and it is traveling along the +z-direction. Having obtained
E(z, t), we obtain H(z, t) either by taking similar steps to solve eq. (10.19) or by using eq.
(10.29) in conjunction with Maxwell's equations as we did in Example 9.8. We will even-
tually arrive at

H(z, t) = Re (Hoe-ayM-ft) ) (10.30)

where

H - ^ (10.31)

and 77 is a complex quantity known as the intrinsic impedance (in ohms) of the medium. It
can be shown by following the steps taken in Example 9.8 that

V = (10.32)

Figure 10.5 £-field with x-component
traveling along +z-direction at times
t = 0 and t = At; arrows indicate in-
stantaneous values of E.
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10.3 WAVE PROPAGATION IN LOSSY DIELECTRICS • 421

with

(10.33)

where 0 < 6V < 45°. Substituting eqs. (10.31) and (10.32) into eq. (10.30) gives

or

H = ~\ e~az cos(co? - pz- 0,) (10.34)

Notice from eqs. (10.29) and (10.34) that as the wave propagates along az, it decreases or
attenuates in amplitude by a factor e~az, and hence a is known as the attenuation constant
or attenuation factor of the medium. It is a measure of the spatial rate of decay of the wave
in the medium, measured in nepers per meter (Np/m) or in decibels per meter (dB/m). An
attenuation of 1 neper denotes a reduction to e~l of the original value whereas an increase
of 1 neper indicates an increase by a factor of e. Hence, for voltages

1 Np = 20 log10 e = 8.686 dB (10.35)

From eq. (10.23), we notice that if a = 0, as is the case for a lossless medium and free
space, a = 0 and the wave is not attenuated as it propagates. The quantity (3 is a measure
of the phase shift per length and is called the phase constant or wave number. In terms of
/?, the wave velocity u and wavelength X are, respectively, given by [see eqs. (10.7b) and
(10.8)]

CO
X =

2x
0

(10.36)

We also notice from eqs. (10.29) and (10.34) that E and H are out of phase by 0, at any
instant of time due to the complex intrinsic impedance of the medium. Thus at any time, E
leads H (or H lags E) by 6V. Finally, we notice that the ratio of the magnitude of the con-
duction current density J to that of the displacement current density Jd in a lossy medium
is

IX* 0)8
= tan I

or

tan 6 = —
coe

(10.37)
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422 Electromagnetic Wave Propagation

where tan 6 is known as the loss tangent and d is the loss angle of the medium as illustrated
in Figure 10.6. Although a line of demarcation between good conductors and lossy di-
electrics is not easy to make, tan 6 or 6 may be used to determine how lossy a medium is.
A medium is said to be a good (lossless or perfect) dielectric if tan d is very small
(<j <SC we) or a good conductor if tan 0 is very large (a 5̂> we). From the viewpoint of
wave propagation, the characteristic behavior of a medium depends not only on its consti-
tutive parameters a, e, and fx but also on the frequency of operation. A medium that is re-
garded as a good conductor at low frequencies may be a good dielectric at high frequen-
cies. Note from eqs. (10.33) and (10.37) that

From eq. (10.14)

V X Hs = (o + jue)Es = jws 1 - E,

(10.38)

(10.39)

where

(10.40a)

or

ec = e (10.40b)

and e' = e, s" = a/w; sc is called the complex permittivity of the medium. We observe that
the ratio of e" to e' is the loss tangent of the medium; that is,

e a
tan d = — = —

e we
(10.41)

In subsequent sections, we will consider wave propagation in other types of media,
which may be regarded as special cases of what we have considered here. Thus we will
simply deduce the governing formulas from those obtained for the general case treated in
this section. The student is advised not just to memorize the formulas but to observe how
they are easily obtained from the formulas for the general case.

Jds = Figure 10.6 Loss angle of a lossy medium.

J
J5 = oEs
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10.5 PLANE WAVES IN FREE SPACE • 423

10.4 PLANE WAVES IN LOSSLESS DIELECTRICS

In a lossless dielectric, a <$C we. It is a special case of that in Section 10.3 except that

a - 0, e = eosr, n = fiofir

Substituting these into eqs. (10.23) and (10.24) gives

a = 0, /3 = WV/JLE

1 - TJXS

Also

and thus E and H are in time phase with each other.

(10.42)

(10.43a)

(10.43b)

(10.44)

i 0.5 PLANE WAVES IN FREE SPACE

This is a special case of what we considered in Section 10.3. In this case,

a - 0, e - eo, (10.45)

This may also be regarded as a special case of Section 10.4. Thus we simply replace e by
eo and \k by /xo in eq. (10.43) or we substitute eq. (10.45) directly into eqs. (10.23) and
(10.24). Either way, we obtain

a = 0, /3 = wV/xoso = —

u = = c, X =

(10.46a)

(10.46b)

where c — 3 X 108 m/s, the speed of light in a vacuum. The fact that EM wave travels in
free space at the speed of light is significant. It shows that light is the manifestation of an
EM wave. In other words, light is characteristically electromagnetic.
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424 • Electromagnetic Wave Propagation

By substituting the constitutive parameters in eq. (10.45) into eq. (10.33), dv = 0 and
V = ^oi where rjo is called the intrinsic impedance of free space and is given by

(10.47)

E = Eo - (3z)

then

H = Ho cos (ut - f3z) &y = —- cos(cof - (3z)

(10.48a)

(10.48b)

The plots of E and H are shown in Figure 10.7(a). In general, if a£, aH, and ak are unit
vectors along the E field, the H field, and the direction of wave propagation; it can be
shown that (see Problem 10.14)

ak X a£ = aH

or

X aH = -

Figure 10.7 (a) Plot of E and H as func-
tions of z at t = 0; (b) plot of E and H at
z = 0. The arrows indicate instantaneous
values.

(a)

-E = Eo cos oj/ ax

H = Ho cos ut ay

(b)
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10.6 PLANE WAVES IN GOOD CONDUCTORS 425

or

aE X aH = ak (10.49)

Both E and H fields (or EM waves) are everywhere normal to the direction of wave prop-
agation, ak. That means, the fields lie in a plane that is transverse or orthogonal to the di-
rection of wave propagation. They form an EM wave that has no electric or magnetic field
components along the direction of propagation; such a wave is called a transverse electro-
magnetic (TEM) wave. Each of E and H is called a uniform plane wave because E (or H)
has the same magnitude throughout any transverse plane, defined by z = constant. The di-
rection in which the electric field points is the polarization of a TEM wave.3 The wave in
eq. (10.29), for example, is polarized in the ^-direction. This should be observed in Figure
10.7(b), where an illustration of uniform plane waves is given. A uniform plane wave
cannot exist physically because it stretches to infinity and would represent an infinite
energy. However, such waves are characteristically simple but fundamentally important.
They serve as approximations to practical waves, such as from a radio antenna, at distances
sufficiently far from radiating sources. Although our discussion after eq. (10.48) deals with
free space, it also applies for any other isotropic medium.

0.6 PLANE WAVES IN GOOD CONDUCTORS

This is another special case of that considered in Section 10.3. A perfect, or good conduc-
tor, is one in which a Ŝ> we so that a/we —> °o; that is,

a — °°, e = so, JX = fionr

Hence, eqs. (10.23) and (10.24) become

a = 13 =

Also,

and thus E leads H by 45°. If

E = Eoe~azcos(a)t - j8z) ax

(10.50)

(10.51a)

(10.51b)

(10.52)

(10.53a)

3Some texts define polarization differently.

Ke
rn

el
 fo

r P
DF 

Sp
lit 

& 
M

er
ge

 D
em

o



426 P Electromagnetic Wave Propagation

then

H = az cos(co? — &z — 45°) a.. (10.53b)

Therefore, as E (or H) wave travels in a conducting medium, its amplitude is attenuated by
the factor e~az. The distance <5, shown in Figure 10.8, through which the wave amplitude
decreases by a factor e~l (about 37%) is called skin depth or penetration depth of the
medium; that is,

or

a
(10.54a)

The skin depth is a measure of the depth to which an EM wave can penetrate the
medium.

Equation (10.54a) is generally valid for any material medium. For good conductors,
eqs. (10.51a) and (10.54a) give

<5 = —^ (10.54b)

The illustration in Figure 10.8 for a good conductor is exaggerated. However, for a
partially conducting medium, the skin depth can be considerably large. Note from
eqs. (10.51a), (10.52), and (10.54b) that for a good conductor.

ao a8
(10.55)

Figure 10.8 Illustration of skin depth.
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10.6 PLANE WAVES IN GOOD CONDUCTORS 427

TABLE 10.2 Skin

Frequency (Hz)

Skin depth (mm)

Depth in

10 60

20.8 8.6

Copper*

100

6.6

500

2.99

104

0.66 6.6

108

X 10~3

1010

6.6 x 10"4

*For copper, a = 5.8 X IO7 mhos/m, fi = ft,,, <5 = 66.1/ vf (in mm).

Also for good conductors, eq. (10.53a) can be written as

E = Eae~dh cos o>t--)ax

showing that 5 measures the exponential damping of the wave as it travels through the con-
ductor. The skin depth in copper at various frequencies is shown in Table 10.2. From the
table, we notice that the skin depth decreases with increase in frequency. Thus, E and H
can hardly propagate through good conductors.

The phenomenon whereby field intensity in a conductor rapidly decreases is known as
skin effect. The fields and associated currents are confined to a very thin layer (the skin) of
the conductor surface. For a wire of radius a, for example, it is a good approximation at
high frequencies to assume that all of the current flows in the circular ring of thickness 5 as
shown in Figure 10.9. Skin effect appears in different guises in such problems as attenua-
tion in waveguides, effective or ac resistance of transmission lines, and electromagnetic
shielding. It is used to advantage in many applications. For example, because the skin
depth in silver is very small, the difference in performance between a pure silver compo-
nent and a silver-plated brass component is negligible, so silver plating is often used to
reduce material cost of waveguide components. For the same reason, hollow tubular con-
ductors are used instead of solid conductors in outdoor television antennas. Effective elec-
tromagnetic shielding of electrical devices can be provided by conductive enclosures a few
skin depths in thickness.

The skin depth is useful in calculating the ac resistance due to skin effect. The resis-
tance in eq. (5.16) is called the dc resistance, that is,

aS
(5.16)

Figure 10.9 Skin depth at high frequencies, 5 <SC a.
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428 Electromagnetic Wave Propagation

We define the surface or skin resistance Rs (in fl/m2) as the real part of the 77 for a good
conductor. Thus from eq. (10.55)

(10.56)

This is the resistance of a unit width and unit length of the conductor. It is equivalent to the
dc resistance for a unit length of the conductor having cross-sectional area 1 X 5 . Thus for
a given width w and length €, the ac resistance is calculated using the familiar dc resistance
relation of eq. (5.16) and assuming a uniform current flow in the conductor of thickness 6,
that is,

obw w
(10.57)

where S 8w. For a conductor wire of radius a (see Figure 10.9), w = 2ira, so

_J__
/?ac _ ff27ra6 a

fl^~~~^~26

(77ra2

Since 6 <3C a at high frequencies, this shows that /?ac is far greater than Rdc. In general, the
ratio of the ac to the dc resistance starts at 1.0 for dc and very low frequencies and in-
creases as the frequency increases. Also, although the bulk of the current is nonuniformly
distributed over a thickness of 56 of the conductor, the power loss is the same as though it
were uniformly distributed over a thickness of 6 and zero elsewhere. This is one more
reason why 5 is referred to as the skin depth.

EXAMPLE 10.2
A lossy dielectric has an intrinsic impedance of 200 /30° fi at a particular frequency. If, at
that frequency, the plane wave propagating through the dielectric has the magnetic field
component

H = 10e"°"cos(cof--xJa>,A/m

find E and a. Determine the skin depth and wave polarization.

Solution:

The given wave travels along ax so that ak = ax; aH = ay, so

- a £ = a* X aH = ax x ay = az

or

aE = - a z
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10.6 PLANE WAVES IN GOOD CONDUCTORS B 429

AlsoWo = 10, so

H,
- = 77 = 200 rW = 200 eJ*16 -> Eo = 2000e"r/6

Except for the amplitude and phase difference, E and H always have the same form. Hence

E = Re (2000e ; 7 rV7V"'a£)

or

E = - 2 e ~ M cosf cot - - + - ) az kV/m
V 2 6 /

Knowing that /3 = 1/2, we need to determine a. Since

and

»-<*/¥ K H =
1 +

CT

COS

1 +
coe

+ 1

1/2

- 1

+ 1

But — = tan 2(L = tan 60° = V l Hence,
we '

2 -

2+ lJ V3

or

a = -4= = F = 0.2887 Np/m4= = F
V3 2V3

and

m5 = - = 2 V 3 = 3.4641
a

The wave has an Ez component; hence it is polarized along the z-direction.
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430 Electromagnetic Wave Propagation

PRACTICE EXERCISE 10.2

A plane wave propagating through a medium with er — 8, ixr - 2 has E = 0.5
e~^3 sin(108f - @z) ax V/m. Determine

(a) 0

(b) The loss tangent

(c) Wave impedance

(d) Wave velocity

(e) H field

Answer: (a) 1.374 rad/m, (b) 0.5154, (c) 177.72 /13.63° 0, (d) 7.278 X 107 m/s,
(e) 2.%\le~M sin(1081 - 0z - 13.63°)ay mA/m.

EXAMPLE 10.3 In a lossless medium for which -q = 60ir, ixr = 1, and H = —0.1 cos (cof — z) ax +
0.5 sin (cor — z)&y A/m, calculate er, co, and E.

Solution:

In this case, a = 0, a = 0, and /3 = 1, so

/Xo 12O-7T

or

120TT 120x
e r = = ^ — = 2 -> er = 4

60TT

2co

c

or

co =
1 (3 X 108)

= 1.5 X 108rad/s

From the given H field, E can be calculated in two ways: using the techniques (based on
Maxwell's equations) developed in this chapter or directly using Maxwell's equations as in
the last chapter.

Method 1: To use the techniques developed in this chapter, we let

E = H, + H2
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10.6 PLANE WAVES IN GOOD CONDUCTORS 431

where Hj = -0.1 cos (uf - z) ax and H2 = 0.5 sin (wt - z) ay and the corresponding
electric field

E = E, + E7

where Ej = Elo cos (cof - z) a£i and E2 = E2o sin (cof - z) aEi. Notice that although H
has components along ax and ay, it has no component along the direction of propagation; it
is therefore a TEM wave.
ForE b

afi] = -(a* X aHl) = - ( a , X -a x ) = a,

E\o = V Hlo = 60TT (0.1) = 6TT

Hence

ForE,

= 6x cos {bit — z) av

aEl = ~{akx aH) = -{az X ay) = ax

E2o = V H2o = 60TT (0.5) = 30x

Hence

E2 = 30TT sin {wt - z)ax

Adding E) and E2 gives E; that is,

E = 94.25 sin (1.5 X 108f - z) ax + 18.85 cos (1.5 X 108? - z) ay V/m

Method 2: We may apply Maxwell's equations directly.

1
V X H = iE + s •

0

because a = 0. But

V X H =

dt

JL JL A.
dx dy dz
Hx(z) Hv(z) 0

dHy dHx

= H2o cos {bit - z) ax + Hlo sin (wf - z)ay

where Hlo = -0.1 and//2o = 0.5. Hence

i f W W

E = - VxH(i ( = — sin (wf - z) a, cos (cor - z) a,,
e J eco eco '

= 94.25 sin(cor - z)ax+ 18.85 cos(wf - z) a, V/m
as expected.
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432 8 Electromagnetic Wave Propagation

PRACTICE EXERCISE 10.3

A plane wave in a nonmagnetic medium has E = 50 sin (10 t + 2z) ay V/m. Find

(a) The direction of wave propagation

(b) A,/, and sr

(c) H

Answer: (a) along -z direction, (b) 3.142 m, 15.92 MHz, 36, (c) 0.7958
sin(108f + 2z) ax A/m.

EXAMPLE 10.4
A uniform plane wave propagating in a medium has

E = 2e'az sin (108f - /3z) ay V/m.

If the medium is characterized by er = 1, \ir = 20, and a = 3 mhos/m, find a, /3, and H.

Solution:

We need to determine the loss tangent to be able to tell whether the medium is a lossy di-
electric or a good conductor.

a
we

108 X 1 X
10

ro = 3393

36TT

showing that the medium may be regarded as a good conductor at the frequency of opera-
tion. Hence,

a= (3 =
4TT X 10~7 X 20(108)(3) 1/2

Also

= 61.4
a = 61.4 Np/m, /3 = 61.4 rad/m

4TT X 10"' X 20(10s)

a

8OO7T

1/2

tan 20 = — = 3393 = 45° = TT/4

Hence

H = Hoe~az sin [ at - &z
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10.6 PLANE WAVES IN GOOD CONDUCTORS 433

where

and

aH = ak X aE = az X ay = -ax

Thus

H -69.1 e"61'4zsin - 61.42z J ax mA/m

PRACTICE EXERCISE 10.4

A plane wave traveling in the +)>-direction in a lossy medium (er = 4, \xr = 1,
cr = 10"2 mhos/m) has E = 30 cos (109?r t + x/4) az V/m at y = 0. Find

(a) E at y = 1 m, / = 2 ns

(b) The distance traveled by the wave to have a phase shift of 10°

(c) The distance traveled by the wave to have its amplitude reduced by 40%

(d) H at y = 2 m, t = 2 ns

Answer: (a) 2.787az V/m, (b) 8.325 mm, (c) 542 mm, (d) -4.71a, mA/m

XAMPLE10.5
A plane wave E = Eo cos (u>t - j3z) ax is incident on a good conductor at z = 0. Find the
current density in the conductor.

Solution:

Since the current density J = CTE, we expect J to satisfy the wave equation in eq. (10.17),
that is,

V2JS - T
2JS = 0

Also the incident E has only an x-component and varies with z. Hence J = Jx(z, t) ax and

l _ _ 2
, 2 5X ^ sx

UZ

which is an ordinary differential equation with solution (see Case 2 of Example 6.5)

7 = Ae~yz + Be+yz
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434 Electromagnetic Wave Propagation

The constant B must be zero because Jsx is finite as z~> °°. But in a good conductor,
a ^> we so that a = /3 = 1/5. Hence

and

or

7 = a + jf3 = a(l + j) =

= Ae~*

(1 + j)

where Jsx (0) is the current density on the conductor surface.

PRACTICE EXERCISE 10.5

Due to the current density of Example 10.5, find the magnitude of the total current
through a strip of the conductor of infinite depth along z and width w along y.

Answer:
V~2

EXAMPLE 10.6
For the copper coaxial cable of Figure 7.12, let a = 2 mm, b = 6 mm, and t = 1 mm. Cal-
culate the resistance of 2 m length of the cable at dc and at 100 MHz.

Solution:

Let

R = Ro + Ri

where Ro and Rt are the resistances of the inner and outer conductors.
Atdc,

/?„ = — =

aira2 5.8 X 107TT[2 X 10~3]2
= 2.744 mfi

aS oir[[b + t]2 - b2] air[t2 + 2bt\
2

~ 5.8 X 107TT [1 + 12] X 10"6

= 0.8429 mO

Hence Rdc = 2.744 + 0.8429 = 3.587 mfi
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10.7 POWER AND THE POYNTING VECTOR 435

A t / = 100 MHz,

Rsl _ I

w o82ira 2-KO. V o

2

2-K X 2 X 10"3

= 0.41 fl

TT X 10s X 4?r X 10"

5.8 X 107

Since 6 = 6.6 /xm <$C t = 1 mm, H1 = 2TT£ for the outer conductor. Hence,

w 2-Kb V a

2TT X 6 X 10
= 0.1384 fi

- 3

TT X 10s X 4TT X

5.8 X 107

Hence,

Rac = 0.41 + 0.1384 = 0.5484 U

which is about 150 times greater than Rdc. Thus, for the same effective current i, the ohmic
loss (i2R) of the cable at 100 MHz is far greater than the dc power loss by a factor of 150.

PRACTICE EXERCISE 10.6

For an aluminum wire having a diameter 2.6 mm, calculate the ratio of ac to dc re-
sistance at

(a) 10 MHz

(b) 2 GHz

Answer: (a) 24.16, (b) 341.7.

0.7 POWER AND THE POYNTING VECTOR

As mentioned before, energy can be transported from one point (where a transmitter is
located) to another point (with a receiver) by means of EM waves. The rate of such energy
transportation can be obtained from Maxwell's equations:

V X E = -J
dt

dE
—
dt

(10.58a)

(10.58b)
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436 (ft Electromagnetic Wave Propagation

Dotting both sides of eq. (10.58b) with E gives

E - ( V X H) = oE2 + E - e —

ef

But for any vector fields A and B (see Appendix A. 10)

V • (A X B) = B • (V X A) - A • (V X B).

Applying this vector identity to eq. (10.59) (letting A = H and B = E) gives

dEH • (V X E) + V • (H X E) = oEz + E • e
dt

From eq. (10.58a),

and thus eq. (10.60) becomes

_tdF?

2 dt
dE2

at

Rearranging terms and taking the volume integral of both sides,

V • (E X H) dv =
dt

— oE dv

Applying the divergence theorem to the left-hand side gives

(E X H) • dS =
dt

-v ss -v

Total power Rate of decrease in Ohmic power
leaving the volume = energy stored in electric — dissipated

and magnetic fields

(10.59)

(10.60)

(10.61)

(10.62)

- EE2 + - fiH2 \dv - I oE2 dv (10.63)

(10.64)

Equation (10.63) is referred to as Poynting's theorem.4 The various terms in the equation
are identified using energy-conservation arguments for EM fields. The first term on the
right-hand side of eq. (10.63) is interpreted as the rate of decrease in energy stored in the
electric and magnetic fields. The second term is the power dissipated due to the fact that
the medium is conducting (a # 0). The quantity E X H on the left-hand side of eq. (10.63)
is known as the Poynting vector SP in watts per square meter (W/m2); that is,

2P = E X H (10.65)

4After J. H. Poynting, "On the transfer of energy in the electromagnetic field," Phil. Trans., vol. 174,
1883, p. 343.
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10.7 POWER AND THE POYNTINC VECTOR 437

It represents the instantaneous power density vector associated with the EM field at a given
point. The integration of the Poynting vector over any closed surface gives the net power
flowing out of that surface.

Poynting's theorem stales th;it the nel power flowing out of a given volume i i\
equal to the lime rate of decrease in the energy stored wilhin r minus the conduction
losses.

The theorem is illustrated in Figure, 10.10.
It should be noted that 9s is normal to both E and H and is therefore along the direc-

tion of wave propagation ak for uniform plane waves. Thus

ak = aE X aH (10.49)

The fact that 2P points along ak causes 2P to be regarded derisively as a "pointing" vector.
Again, if we assume that

then

E(z, t) = Eoe
 az cos (ut - f3z) ax

U(Z, 0 = T-T e'az cos {at - j3z - 9,) a,

Power out Figure 10.10 Illustration of power balance
for EM fields.

Power in
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438 Electromagnetic Wave Propagation

and

E2

<3>(z, 0 = 7-7 e~2az cos (cot - fiz) cos (cot - Hz - 0J a,

M
e 2az [cos 6 + cos (2cot - 2/3z - 6 )] a-

(10.66)

since cos A cos B = — [cos (A — 5) + cos (A + B)]. To determine the time-average

Poynting vector 2?ave(z) (in W/m2), which is of more practical value than the instantaneous
Poynting vector 2P(z, t), we integrate eq. (10.66) over the period T = 2ir/u>; that is,

dt (10.67)

It can be shown (see Prob. 10.28) that this is equivalent to

(10.68)

By substituting eq. (10.66) into eq. (10.67), we obtain

J

(10.69)

The total time-average power crossing a given surface S is given by

p — \ Of, (10.70)

We should note the difference between 2?, S?ave, and Pave. SP(*> y. z. 0 i s m e Poynting
vector in watts/meter and is time varying. 2PaVe0c, y, z) also in watts/meter is the time
average of the Poynting vector S?; it is a vector but is time invariant. Pave is a total time-
average power through a surface in watts; it is a scalar.

EXAMPLE 10.7
In a nonmagnetic medium

E = 4 sin (2TT X 107 - 0.8*) a, V/m
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10.7 POWER AND THE POYNTING VECTOR ^ 439

Find

(a) er, r;

(b) The time-average power carried by the wave

(c) The total power crossing 100 cm2 of plane 2x + y = 5

Solution:

(a) Since a — 0 and (3 ¥= co/c, the medium is not free space but a lossless medium.

(3 = 0.8, co = 27r X 107, fx = [io (nonmagnetic), e = eoe r

Hence

or

= co V lie = co V iioeosr = — V e r

13c _ 0.8(3 X 108) _ 12
r " co ~ 2TT X 107

 IT

sr = 14.59

8

= 98.7 0

= - sin2(cor - /3x)

I

UOir = 120. • f2 = 10.2

= M = ^
2TJ 2 X IOTT2

= 81 axmW/m2

(c) On plane 2x + y = 5 (see Example 3.5 or 8.5),

2a, + a,,

V5

Hence the total power is

Pav, =

= (81 X 10"X) • (100 X 1(

162 X 10~5

- = 724.5 /tW

2ax
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440 • Electromagnetic Wave Propagation

PRACTICE EXERCISE 10.7

In free space, H = 0.2 cos (uit — /3x) az A/m. Find the total power passing through:

(a) A square plate of side 10 cm on plane x + z = 1

(b) A circular disc of radius 5 cm on plane x = 1.

Answer: (a) 0, (b) 59.22 mW.

10.8 REFLECTION OF A PLANE WAVE
AT NORMAL INCIDENCE

So far, we have considered uniform plane waves traveling in unbounded, homogeneous
media. When a plane wave from one medium meets a different medium, it is partly re-
flected and partly transmitted. The proportion of the incident wave that is reflected or trans-
mitted depends on the constitutive parameters (e, ju, a) of the two media involved. Here we
will assume that the incident wave plane is normal to the boundary between the media;
oblique incidence of plane waves will be covered in the next section after we understand
the simpler case of normal incidence.

Suppose that a plane wave propagating along the +z-direction is incident normally on
the boundary z = 0 between medium 1 (z < 0) characterized by er,, eu fix and medium
2 (z > 0) characterized by a2, e2, /*2>

 as shown in Figure 10.11. In the figure, subscripts /,
r, and t denote incident, reflected, and transmitted waves, respectively. The incident, re-
flected, and transmitted waves shown in Figure 10.11 are obtained as follows:

Incident Wave:

(E,, H,) is traveling along +az in medium 1. If we suppress the time factor eJo" and assume
that

Els(z) = Eioe-y'z ax (10.71)

then

H,,(z) = Hioe-"z a, = ^ e~™ av (10.72)

Reflected Wave:

(En Hr) is traveling along -&z in medium 1. If

Era(z) = Ery
z ax (10.73)
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10.8 REFLECTION OF A PLANE WAVE AT NORMAL INCIDENCE 441

medium 1 (ol . e,.

H,0
(incident wave)

H,

(reflected wave)

medium 2 (o2,^2^2)

H,0 • •»
(transmitted wave)

2 = 0

Figure 10.11 A plane wave incident normally on an interface between
two different media.

then

KM) = Hmey'\-ay) = — ewa,, (10.74)

where Era has been assumed to be along ax; we will consistently assume that for normal in-
cident E,, Er, and E, have the same polarization.

Transmitted Wave:

(E,, Ht) is traveling along +az in medium 2. If

then

(10.75)

(10.76)

In eqs. (10.71) to (10.76), Eio, Ero, and Eto are, respectively, the magnitudes of the incident,
reflected, and transmitted electric fields at z = 0.

Notice from Figure 10.11 that the total field in medium 1 comprises both the incident
and reflected fields, whereas medium 2 has only the transmitted field, that is,

Ej = E, + E n H, = H; + Hr

E2 = E,, H2 = Hr

At the interface z = 0, the boundary conditions require that the tangential components
of E and H fields must be continuous. Since the waves are transverse, E and H fields
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442 is Electromagnetic Wave Propagation

are entirely tangential to the interface. Hence at z = 0, Eltan = E2tan and H,tan = H2tan

imply that

E,(0) + Er(0) = E,(0)

H,(0) + Hr(0) = H,(0)

From eqs. (10.77) and (10.78), we obtain

Em =

and

Eu, =

Eio + Ero = Eto

- (Elo - Ero) = —

12
E
'-'lO

(10.77)

(10.78)

(10.79)

(10.80)

We now define the reflection coefficient T and the transmission coefficient T from
eqs. (10.79) and (10.80) as

or

and

+ li

F = VF

(10.81a)

(10.81b)

or

Note that

T =
Eio

F = rF-

1. 1 + T = T

2. Both F and r are dimensionless and may be complex.
3. o s jr| < l

(10.82a)

(10.82b)

(10.83)

The case considered above is the general case. Let us now consider a special case
when medium 1 is a perfect dielectric (lossless, O\ = 0) and medium 2 is a perfect con-
ductor (a2 —

 cc). For this case, r/2 = 0; hence, T = -1, and T = 0, showing that the wave
is totally reflected. This should be expected because fields in a perfect conductor must
vanish, so there can be no transmitted wave (E2 = 0). The totally reflected wave combines
with the incident wave to form a standing wave. A standing wave "stands" and does not
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10.8 REFLECTION OF A PLANE WAVE AT NORMAL INCIDENCE 443

travel; it consists of two traveling waves (E, and Er) of equal amplitudes but in opposite di-
rections. Combining eqs. (10.71) and (10.73) gives the standing wave in medium 1 as

But

Hence,

or

Thus

or

Els = E,,. + E ra = (Eioe
 y'z + Eroe

y'z) ax

E, , = -Eio(e
i0'z - e--^z) ax

E, = Re (E]se
M)

E{ = 2Eio sin (3^ sin ut ax

(10.84)

(10.85)

(10.86)

By taking similar steps, it can be shown that the magnetic field component of the wave is

2Eio
Hi = cos p,z cos u>t av (10.87)

A sketch of the standing wave in eq. (10.86) is presented in Figure 10.12 for t = 0, 778,
774, 3778, 772, and so on, where T = 2TT/W. From the figure, we notice that the wave does
not travel but oscillates.

When media 1 and 2 are both lossless we have another special case (a{ = 0 = a2). In
this case, ^ and rj2

 a r e r e a l a nd so are F and T. Let us consider the following cases:

CASE A.

If r/2 > Jji, F > 0. Again there is a standing wave in medium 1 but there is also a transmit-
ted wave in medium 2. However, the incident and reflected waves have amplitudes that are
not equal in magnitude. It can be shown that the maximum values of |EX j occur at

or

mr

^l^-inax

2 '

= WE

n = 0, 1, 2, . . . (10.:
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444 Electromagnetic Wave Propagation

• JX

Figure 10.12 Standing waves E = 2Eio sin /3,z sin oit &x; curves
0, 1, 2, 3, 4, . . . are, respectively, at times t = 0, 778, TIA, 37/8, 772,. . .;
X = 2x7/3,.

and the minimum values of |Et | occur at

-/3,zmin = (2« + 1)

or

+ (2w + 1)
2/3,

w — u, l , z, (10.89)

CASE B.

If r/2 < r/!, T < 0. For this case, the locations of |Ej| maximum are given by eq. (10.89)
whereas those of |EX | minimum are given by eq. (10.88). All these are illustrated in Figure
10.13. Note that

1. |H] j minimum occurs whenever there is |Ei | maximum and vice versa.
2. The transmitted wave (not shown in Figure 10.13) in medium 2 is a purely travel-

ing wave and consequently there are no maxima or minima in this region.

The ratio of |Ei |max to |E, |min (or |Hj |max to |Hj |min) is called the standing-wave ratio
s; that is,

s =
Mi
IH,

l + r |
l - r

(10.90)
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10.8 REFLECTION OF A PLANE WAVE AT NORMAL INCIDENCE 445

o, --0 a, =0

Hgure 10.13 Standing waves due to reflection at an interface between two
lossless media; X = 2ir/f3i.

or

s - 1

s + 1
(10.91)

Since |F| :£ 1, it follows that 1 < s < °°. The standing-wave ratio is dimensionless and it
is customarily expressed in decibels (dB) as

s indB = 201og10i
f (10.92)

\MPLE 10.8
In free space (z ^ 0), a plane wave with

H = 10 cos (108f - 0z) ax mA/m

is incident normally on a lossless medium (e = 2eo, p = 8jiio) in region z > 0. Determine
the reflected wave H n Er and the transmitted wave Hr, Er.

Solution:

This problem can be solved in two different ways.

Method 1: Consider the problem as illustrated in Figure 10.14. For free space,

10s

c 3 X 108

= 7?o = 1207T
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446 Electromagnetic Wave Propagation

I free space

Figure 10.14 For Example 10.8.

lossless dielectric

For the lossless dielectric medium,

/— / / o) 4
ft, = coV/xe = w\VosoV/x,£ r = — • (4) = 4/3, = -

! Given that H, = 10 cos (108r - (3^) ax, we expect that

where

I and

Hence,

Now

f = £ i o cos (108f

X a .̂ = ax X a, = -ay

io = 10

E,- = - 10rjo cos (108? - /3,z) a,, mV/m

! Thus

r

Eio

E r = - — rj0 cos f 108f + - z ) &y mV/m
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10.8 REFLECTION OF A PLANE WAVE AT NORMAL INCIDENCE " 447

from which we easily obtain Hr as

Similarly,

Hr = cos ( 108f + - z ) ax mA/m

F 4 4
^ = r = l + T = - or Ew = -Eio

Thus

E, = Eto cos (108f - /32z) aEi

where a£i = a£. = - a r Hence,

440

3
Er = - — rjocos ( 108? - -z}aymV/m

from which we obtain

Ht = — cos (108f - -zjax mA/m

Method 2: Alternatively, we can obtain H r and H, directly from H, using

Thus

= - F and — = T

1 1 0

Hro - ——Hio - —

and

to 3 2r?o " 3 '° 3

10 o
H, = - — cos (108? + j3iz) ax mA/m

20
H, = — cos (108f - P2z) ax mA/m

as previously obtained.
Notice that the boundary conditions at z = 0, namely,

40 o
E,<0) + Er(0) = E,(0) = -— vo cos (108?) ay
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448 Electromagnetic Wave Propagation

and

20 o
H,<0) + Hr(0) = H,(0) = — cos (108r) ax

are satisfied. These boundary conditions can always be used to cross-check E and H.

PRACTICE EXERCISE 10.8

A 5-GHz uniform plane wave Efa = 10 e~jl3z ax V/m in free space is incident nor-
mally on a large plane, lossless dielectric slab (z > 0) having s = 4e0, /u. = /x0. Find
the reflected wave ErJ and the transmitted wave Ets.

Answer: -3.333 expO'&z) ax V/m, 6.667 exp(-jP2z) a* V/m where p2 = Wi =
200TT/3.

EXAMPLE 10.9
Given a uniform plane wave in air as

E, = 40 cos (at - Pz) ax + 30 sin (wt - /?z) a}, V/m

(a) FindH,.

(b) If the wave encounters a perfectly conducting plate normal to the z axis at z = 0, find
the reflected wave Er and Hr.

(c) What are the total E and H fields for z < 0?

(d) Calculate the time-average Poynting vectors for z < 0 and z > 0.

Solution:

(a) This is similar to the problem in Example 10.3. We may treat the wave as consisting of
two waves En and E,2, where

En = 40 cos (wf - Pz) ax, E;2 = 30 sin (wt - /3z) ay

At atmospheric pressure, air has er = 1.0006 = 1. Thus air may be regarded as free space.
Let H, = Hn + H,-2.

where

H n = HiUl cos (ait - &z) aHl

= Eil0 40

120TT 3TT

a//, = a t X a £ = a, X ax = ay
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Similarly,

where

Hence

and

10.8 REFLECTION OF A PLANE WAVE AT NORMAL INCIDENCE • 449

Hn = — cos (ut - j3z) ay
3TT

I,-2 = Hi2o sin (ut - /3z) a#2

= Ei2o 30 = 1

»?o 1207T 47T

= aj. X a £ = az X ay = - a x

H,2 = ——- sin (cor - /3z)
4TT

= sin (ut - j8z) ax H cos (art - /3z) av mA/m
4TT 3TT

This problem can also be solved using Method 2 of Example 10.3.

(b) Since medium 2 is perfectly conducting,

02 „ .

that is,

r = - 1 , T = 0

showing that the incident E and H fields are totally reflected.

F = r F = — F-

Hence,

Er = - 4 0 cos (ut + $z) ax - 30 sin (ut + (3z) ay V/m

Hr can be found from Er just as we did in part (a) of this example or by using Method 2 of
the last example starting with H,. Whichever approach is taken, we obtain

Hr = — cos (ut + |Sz) av sin (ut + |Sz)ax A/m
i-w 4x
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450 Electromagnetic Wave Propagation

(c) The total fields in air

E, = E, + Er and H, = H, + Hr

can be shown to be standing wave. The total fields in the conductor are

E2 = Er = 0, H2 = H, = 0.

(d) For z < 0,

™ _ I E , /

For z > 0 ,

1 2 2

= T — [Eioaz - Emaz]
2»?

1 2 + 302)
240TT

= 0

[(402 + 302)az - (402 + 302)aJ

op — |E2

2rj2

= ^ a 7 = 0

because the whole incident power is reflected.

PRACTICE EXERCISE 10.9

The plane wave E = 50 sin (o)t — 5x) ay V/m in a lossless medium (n = 4/*o,
e = so) encounters a lossy medium (fi = no, e = 4eo, <r = 0.1 mhos/m) normal to
the x-axis at x = 0. Find

(a) F, T, and s

(b) E randH r

(c) E randH,

(d) The time-average Poynting vectors in both regions

Answer: (a) 0.8186 /171.1°, 0.2295 /33.56°, 10.025, (b) 40.93 sin (ait + 5x +
171.9°) ay V/m, -54.3 sin (at + 5x + 171.9° az mA/m,

-6.02U(c) 11.47 e~6-UZI*sin (cor -7.826x + 33.56°) ay V/m, 120.2 e
M - 7.826x - 4.01°) a, mA/m, (d) 0.5469 &x W/m2, 0.5469 exp
(-12.04x)axW/m2.
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10.9 REFLECTION OF A PLANE WAVE AT OBLIQUE INCIDENCE 451

10.9 REFLECTION OF A PLANE WAVE
\T OBLIQUE INCIDENCE

We now consider a more general situation than that in Section 10.8. To simplify the analy-
sis, we will assume that we are dealing with lossless media. (We may extend our analysis
to that of lossy media by merely replacing e by sc.) It can be shown (see Problems 10.14
and 10.15) that a uniform plane wave takes the general form of

E(r, t) = Eo cos(k • r - cof)
= Re [Eoe

Kkr-wt)]
(10.93)

where r = xax + yay + zaz is the radius or position vector and k = kxax + kyay + kzaz is
the wave number vector or the propagation vector; k is always in the direction of wave
propagation. The magnitude of k is related to a> according to the dispersion relation

k2 = k2
x k\, k] = (10.94)

Thus, for lossless media, k is essentially the same as (3 in the previous sections. With the
general form of E as in eq. (10.93), Maxwell's equations reduce to

k X E =

k X H = -

k H = 0

k - E = 0

(10.95a)

(10.95b)

(10.95c)

(10.95d)

showing that (i) E, H, and k are mutually orthogonal, and (ii) E and H lie on the plane

k • r = kjc + kyy + kzz = constant

From eq. (10.95a), the H field corresponding to the E field in eq. (10.93) is

77
(10.96)

Having expressed E and H in the general form, we can now consider the oblique inci-
dence of a uniform plane wave at a plane boundary as illustrated in Figure 10.15(a). The
plane denned by the propagation vector k and a unit normal vector an to the boundary is
called the plane of incidence. The angle 0, between k and an is the angle of incidence.

Again, both the incident and the reflected waves are in medium 1 while the transmit-
ted (or refracted wave) is in medium 2. Let

E,- = Eio cos (kixx + kiyy + kizz - us-t)

Er = Ero cos (krxx + kny + krzz - cV)

E, = Ero cos (ktxx + ktyy + ktzz - u,t)

(10.97a)

(10.97b)

(10.97c)
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452 Electromagnetic Wave Propagation

medium 1 (ej , M[)

(3, sin 6,.

kiz = (?! cos 8,-

medium

(a)

kr- = (3, cos Br

kr = (3

(b)

(3, sin 9 r

(3, sin 0,

' , z = (3, cos 8,

Figure 10.15 Oblique incidence of a plane wave: (a) illustration of 0,, 6r, and 0,;
(b) illustration of the normal and tangential components of k.

where kh kr, and k, with their normal and tangential components are shown in Figure
10.15(b). Sincejhetangential component of E must be; continuous_at the: boundary z = 0,

E,<z = 0) + Er(z = 0) = = 0) (10.98)

The only way this boundary condition will be satisfied by the waves in eq. (10.97) for all x
and y is that

1 . CO,- = U)r = O) r = CO

•) h. = K _ JL J.

- • "-ix Krx *-tx Kx

o. K.ly ft-ry "•/y ^y

Condition 1 implies that the frequency is unchanged. Conditions 2 and 3 require that the
tangential components of the propagation vectors be continuous (called the phase match-
ing conditions). This means that the propagation vectors k,, kt, and kr must all lie in the
pJ.anejDf incidence^Thus, by conditions 2 and 3,

fe; sin %i = kr sin 6r

kj sin 61 = k, sin 0,

(10.99)

(10.100)
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10.9 REFLECTION OF A PLANE WAVE AT OBLIQUE INCIDENCE 453

where 8r is the angle of reflection and 6, is the angle of transmission. But for lossless
media,

kt = kr = /3, = co

From eqs. (10.99) and (10.101a), it is clear that

(10.101a)

(10.101b)

(10.102)

so that the angle of reflection 8r equals the angle of incidence 0, as in optics. Also from
eqs. (10.100) and (10.101),

(10.103)
sin 8i k, Hi

where u = ai/k is the phase velocity. Equation (10.103) is the well-known Snell's law,
which can be written as

nx sin 0, = n2 sin 0, (10.104)

where nx = c\n\e\ = c^u\ a nd "2 = c v ine2 = C^U2 &?£ tn e refractive indices of the
media.

Based on these general preliminaries on oblique incidence, we will now specifically
consider two special cases: one with the E field perpendicular to the plane of incidence, the
other with the E field parallel to it. Any other polarization may be considered as a linear
combination of these two cases.

A. Parallel Polarization

This case is illustrated in Figure 10.16 where the E field lies in the xz-plane, the plane of
incidence. In medium 1, we have both incident and reflected fields given by

Efa = £,o(cos 0,- a, - sin 0,- az) «,-#.<* ™ «<+*«»«,)

H — i° ~-jPi(* s i n ^i+z cos 9,.)

Ers = Ero(coserax + &meraz)e-J0'(xsmf)^cos^

p
H ^ro -/flrfxsin 0,-z cos 0.)„ = - - — e a,,

(10.105a)

(10.105b)

(10.106a)

(10.106b)

where fil = co V ̂ is,. Notice carefully how we arrive at each field component. The
trick in deriving the components is to first get the polarization vector k as shown in
Figure 10.15(b) for incident, reflected, and transmitted waves. Once k is known, we
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454 Electromagnetic Wave Propagation

Figure 10.16 Oblique incidence with E par-
allel to the plane of incidence.

medium 1 z - 0 medium 2

define Es such that V • E.v = 0 or k • E s = 0 and then H s is obtained from H s =
k E

— X E , = a* X - .

The transmitted fields exist in medium 2 and are given by

E,s = £M(cos 0, ax - sin 0, a,) e->&usine,+Jcose,)

H ( i = - ^ e ^ « x s m fl, + z cos 0,)

(10.107a)

(10.107b)

where f32 = o> V /u2e2. Should our assumption about the relative directions in eqs. (10.105)
to (10.107) be wrong, the final result will show us by means of its sign.

Requiring that dr = dj and that the tangential components of E and H be continuous at
the boundary z — 0, we obtain

(Ei0 + Ero) cos 0,- = E,o cos 0t

— (£,„ - Em) = — Eto

Expressing Em and Eta in terms of Eio, we obtain

_ Ero. _ 1\1 COS 0, ~ •>?! COS 0,-

£ , o 7j2 cos 0, + rjj cos 0 ;

or

and

£ t o _ 2r;2 cos 0,

Eio 7]2 cos 0, + r\ | cos 0,

(10.108a)

(10.108b)

(10.109a)

(10.109b)

(10.110a)
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10.9 REFLECTION OF A PLANE WAVE AT OBLIQUE INCIDENCE 455

or

E,o ~ T\\Eia (10.110b)

Equations (10.109) and (10.110) are called Fresnel's equations. Note that the equations
reduce to eqs. (10.81) and (10.82) when 0,- = 0, = 0 as expected. Since 0,- and d, are related
according to Snell's law of eq. (10.103), eqs. (10.109) and (10.110) can be written in terms
of 9j by substituting

cos 0, = V l - sin2 6>r = V l - (w2/H,)2sin2 0,-

From eqs. (10.109) and (10.110), it is easily shown that

(10.111)

= Til
l!

fcos6t\
Vcos 0,7

(10.112)

From eq. (10.109a), it is evident that it is possible that T\\ = 0 because the numerator
is the difference of two terms. Under this condition, there is no reflection (Em = 0) and the
incident angle at which this takes place is called the Brewster angle 0B||. The Brewster
angle is also known as the polarizing angle because an arbitrarily polarized incident wave
will be reflected with only the component of E perpendicular to the plane of incidence. The
Brewster effect is utilized in a laser tube where quartz windows are set at the Brewster
angle to control polarization of emitted light. The Brewster angle is obtained by setting
0, = dB when Tn = 0 in eq. (10.109), that is,

or

r,22(l - sin20r)

Introducing eq. (10.103) or (10.104) gives

- sin20B||)

(10.113)

It is of practical value to consider the case when the dielectric media are not only lossless
but nonmagnetic as well—that is, fxx = JX2 = / v For this situation, eq. (10.113) becomes

sin2 0B|| =
1

- > sin 0Rl, =

or

tan 0B,, = A / — = —

showing that there is a Brewster angle for any combination of 8! and e2.

(10.114)
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456 Electromagnetic Wave Propagation

B. Perpendicular Polarization

In this case, the E field is perpendicular to the plane of incidence (the xz-plane) as shown
in Figure 10.17. This may also be viewed as the case where H field is parallel to the plane
of incidence. The incident and reflected fields in medium 1 are given by

p — p -j73iCtsin0j+zcose:) ,
a,,

H,-s = —- ( -cos 6, ax + sin 0,- a,) e

Hlrs — tLrOt Ay

Urs = —- (cos 6r ax + sin 6r az) e~jl

while the transmitted fields in medium 2 are given by

E _ p -j/32(x sin 9,+z cos 9,) c

'av

EloH,s = ^f (-cos 6, ax + sin 9, az)
V

(10.115a)

(10.115b)

(10.116a)

(10.116b)

(10.117a)

(10.117b)

Notice that in defining the field components in eqs. (10.115) to (10.117), Maxwell's equa-
tions (10.95) are always satisfied. Again, requiring that the tangential components of E and
H be continuous at z = 0 and setting dr equal to 6h we get

p. _i_ p = p

— (E,o - Ero) cos dj = — Elo cos Bt

Expressing Ero and Et0 in terms of Eio leads to

tLro

Eio

V2

V2

cos 6

cos 6,- + r

j COS

! COS

(10.118a)

(10.118b)

(10.119a)

E,-

Figure 10.17 Oblique incidence with E per-
pendicular to the plane of incidence.
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10.9 REFLECTION OF A PLANE WAVE AT OBLIQUE INCIDENCE 457

or

and

ro ^ J_ io

Eio ri2 cos 6,• + vl cos 9,

(10.119b)

(10.120a)

or

Eto - (10.120b)

which are the Fresnel's equations for perpendicular polarization. From eqs. (10.119) and
(10.120), it is easy to show that

1 + r ± = TL (10.121)

which is similar to eq. (10.83) for normal incidence. Also, when 9/ = 9, = 0, eqs. (10.119)
and (10.120) become eqs. (10.81) and (10.82) as they should.

For no reflection, TL = 0 (or Er = 0). This is the same as the case of total transmis-
sion (TX = 1). By replacing 0, with the corresponding Brewster angle 9B±, we obtain

t\2 cos 9B± = ry,cos 9,

or

- sin20()

Incorporating eq. (10.104) yields

sin2 9Bx =
AM 62

(10.122)

Note that for nonmagnetic media (ft, = A*2 = AO, sin2 0B± ""* °° i n eq- (10.122), so 9BL

does not exist because the sine of an angle is never greater than unity. Also if /x, + JX2 and
6] = e2, eq. (10.122) reduces to

sin 1

or

(10.123)

Although this situation is theoretically possible, it is rare in practice.
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458 Electromagnetic Wave Propagation

EXAMPLE 10.10
An EM wave travels in free space with the electric field component

E , = 100e-'<0-866v+a5j)axV/m

Determine

(a) co and X

(b) The magnetic field component

(c) The time average power in the wave

Solution:

(a) Comparing the given E with

E = E eikT = E eJ
{k'x+k<y+k'z)

 a

it is clear that

kx = 0, ky = 0.866, kz = 0.5

Thus

But in free space,

Hence,

k= Vk2
x + ky + k\ = V(0.866)2 + (0.5)2 = 1

/ co 2TT

k = 13 = coV/i020 = — = —
C A

co = kc = 3 X 10*rad/s

X = — = 2TT = 6.283 m
k

(b) From eq. (10.96), the corresponding magnetic field is given by

Hs = — k X E.
^iCO

(0.866ay + 0.5az)

~ 4x X 10"7 X 3 X 108
X 100a re

j k r

or

H, = (1.33 av - 2.3 a,) e
m*66v+(l5z> mA/m

(c) The time average power is

(100)2

2(120TT)
(0.866 av + 0.5 a,)

= 11.49av + 6.631 a,W/m2
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10.9 REFLECTION OF A PLANE WAVE AT OBLIQUE INCIDENCE 459

XAMPLE 10.11

PRACTICE EXERCISE 10.10

Rework Example 10.10 if

£ = (10

in free space.

5a2) cos(cof + 2y - Az) V/m

Answer: (a) 1.342 X 109 rad/s, 1.405 m, (b) -29.66 cos (1.342 X 109f + 2y-
Az) ax mA/m, (c) -0.07415 ay + 0.1489 a, W/m2.

A uniform plane wave in air with

E = 8 cos (at - Ax - 3z) av V/m

is incident on a dielectric slab (z ^ 0) with fxr = 1.0, er = 2.5, a = 0. Find

(a) The polarization of the wave

(b) The angle of incidence

(c) The reflected E field

(d) The transmitted H field

Solution:
(a) From the incident E field, it is evident that the propagation vector is

Hence,

k, = 4a, + 3a_, -»£,- = 5 = coV/u,0e0 =

= 5c = 15 X 108 rad/s.

A unit vector normal to the interface (z = 0) is az. The plane containing k and a- is
y = constant, which is the jcz-plane, the plane of incidence. Since E, is normal to this
plane, we have perpendicular polarization (similar to Figure 10.17).

(b) The propagation vectors are illustrated in Figure 10.18 where it is clear that

tan0,- = — = -->0,- = 53.13°
kiz 3

Alternatively, without Figure 10.18, we can obtain 0, from the fact that 0, is the angle
between k and an, that is,

cos 0,- = ak • an =
3a,

or

0,- = 53.13°
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460 Electromagnetic Wave Propagation

j (c) An easy way to find E r is to use eq. (10.116a) because we have noticed that this
1 problem is similar to that considered in Section 10.9(b). Suppose we are not aware of this.
I Let

j Er = Ero cos (cor - kr • r) ay

> which is similar to form to the given E,. The unit vector ay is chosen in view of the fact that
i the tangential component of E must be continuous at the interface. From Figure 10.18,

k r = krx ax — krz az

where

• krx = kr sin 9n krz = kr cos 6r

But 6r = Oj and kr = k}• = 5 because both kr and k{ are in the same medium. Hence,

kr = Aax - 3az

To find Em, we need 6t. From Snell's law

sin 6, = — sin 0, =
n2

sin 53.13°

sin 8'i

2.5

or

6, = 30.39°

Eio

7]2 COS 0; - IJi COS 0,

rj! cos 6tcos

Figure 10.IS Propagation vectors of
ExamplelO.il.
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10.9 REFLECTION OF A PLANE WAVE AT OBLIQUE INCIDENCE 461

where rjl = rjo = 377, n]2 =
377

= 238.4

Hence,

and

238.4 cos 35.13° - 377 cos 30.39°
1 ~~ 238.4 cos 53.13° + 377 cos 30.39° ~

Em = T±Eio = -0.389(8) = -3.112

E, = -3.112 cos (15 X 108f - Ax + 3z)ayV/m

(d) Similarly, let the transmitted electric field be

E, = Eto cos (ut - k, • r) ay

where

W 1

c

From Figure 10.18,

k, = j32 = w V

_ 15 X 108

3 X 108

ktx = k, sin 6, = 4

kR = ktcos6, = 6.819

or

k, = 4ax + 6.819 az

Notice that kix = krx = ktx as expected.

_Ew__ 2 7]2 COS dj

Eio i)2 cos dj + 7)] cos 6,

2 X 238.4 cos 53.13°
~ 238.4 cos 53.13° + 377 cos 30.39°
= 0.611

The same result could be obtained from the relation T±= \ + I \ . Hence,

Eto = TLEio = 0.611 X 8 = 4.888

Ef = 4.888 cos (15 X 108r -Ax- 6.819z) ay
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462 Electromagnetic Wave Propagation

From E,, H, is easily obtained as

7.906(238.4) a, cos («r - k • r)

H( = (-17.69 ax + 10.37 az) cos (15 X \(ft -Ax- 6.819z) mA/m.

PRACTICE EXERCISE 10.11

If the plane wave of Practice Exercise 10.10 is incident on a dielectric medium
having a = 0, e — 4eo, /x = /to and occupying z ^ 0 , calculate

(a) The angles of incidence, reflection, and transmission

(b) The reflection and transmission coefficients

(c) The total E field in free space

(d) The total E field in the dielectric

(e) The Brewster angle.

Answer: (a) 26.56°, 26.56°, 12.92°, (b) -0.295, 0.647, (c) (10 ay + 5az) cos
(at + 2y - 4z) + (-2.946a, + 1.473az) cos (cat + 2y + 4z) V/m,
(d) (7.055a, + 1.618az) cos (wf + 2y - 8.718z) V/m, (e) 63.43°.

SUMMARY 1. The wave equation is of the form

dt2

2d
2<P

- u — T = 0
dz

with the solution

4> = A sin (wf - /3z)

where u = wave velocity, A = wave amplitude, co = angular frequency (=2TT/), and
)3 = phase constant. Also, (3 = OJ/M = 2TT/X or M = fk = X/r, where X = wavelength
and T = period.

2. In a lossy, charge-free medium, the wave equation based on Maxwell's equations is of
the form

V2AS - 72A, = 0

where As is either Es or Hs and y = a + jf3 is the propagation constant. If we assume
Es = Exs(z) &x, we obtain EM waves of the form

E(z, t) = Eoe'az cos (cof - Pz) ax

H(z, r) = Hoe~az cos (wt - 0z - 0,) av
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SUMMARY 463

where a = attenuation constant, j3 = phase constant, 77 = |r/|/fln = intrinsic imped-
ance of the medium. The reciprocal of a is the skin depth (5 = I/a). The relationship
between /3, w, and X as stated above remain valid for EM waves.

3. Wave propagation in other types of media can be derived from that for lossy media as
special cases. For free space, set a = 0, e = sQ, fi = /xo; for lossless dielectric media,
set a = 0, e = eosr, and n = jxofxr\ and for good conductors, set a — °°, e = ea,
H = fio, or a/we —> 0.

4. A medium is classified as lossy dielectric, lossless dielectric or good conductor depend-
ing on its loss tangent given by

tan 6 =
Js

\h,
a

coe

where ec = e' - je" is the complex permittivity of the medium. For lossless dielectrics
tan0 ^C 1, for good conductors tan d Ĵ> 1, and for lossy dielectrics tan 6 is of the
order of unity.

5. In a good conductor, the fields tend to concentrate within the initial distance 6 from the
conductor surface. This phenomenon is called skin effect. For a conductor of width w
and length i, the effective or ac resistance is

awd

where <5 is the skin depth.
6. The Poynting vector, 9\ is the power-flow vector whose direction is the same as the di-

rection of wave propagation and magnitude the same as the amount of power flowing
through a unit area normal to its direction.

f = E X H , 9>ave = 1/2 Re (E, X H*)

7. If a plane wave is incident normally from medium 1 to medium 2, the reflection coeffi-
cient F and transmission coefficient T are given by

12

Eio V2 + V

The standing wave ratio, s, is defined as

= i^= 1 + r

s =

8. For oblique incidence from lossless medium 1 to lossless medium 2, we have the
Fresnel coefficients as

rj2cos 6, - r] | cos 0,

r/2 cos 6, + rjt cos 0/ II =
2?j2 cos 6j

1)2 COS dt + Tfj] COS dj
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464 M Electromagnetic Wave Propagation

for parallel polarization and

r)2 COS 6/ — 7)i COS 8t

i)2 cos 6i + r)i cos 6,

for perpendicular polarization. As in optics,

T±_ =
2ry2 COS Oj

rj2 cos 6i + rjj cos

sin i
sin 0, 02

Total transmission or no reflection (F = 0) occurs when the angle of incidence 0, is
equal to the Brewster angle.

10.1 Which of these is not a correct form of the wave Ex = cos (ut —

(a) cos (Pz ~ ut)

(b) sin (Pz - ut - TT/2)

(2-Kt 2TT:

(c) cos I — —

\ 1 A

(d) Re (e-/(w'"/3z))

(e) cos 0(z ~ ut)
10.2 Identify which of these functions do not satisfy the wave equation:

(a) 50eM '~3z )

(b) sinw(10z + 5t)

(c) (x + 2tf

• _, (d) cos2(>> + 50

(e) sin x cos t

—> (f) cos (5y + 2x)

10.3 Which of the following statements is not true of waves in general?

-~"> (a) It may be a function of time only.

(b) It may be sinusoidal or cosinusoidal.

(c) It must be a function of time and space.

(d) For practical reasons, it must be finite in extent.

10.4 The electric field component of a wave in free space is given by E = 10 cos
(107f + kz) av, V/m. It can be inferred that

(a) The wave propagates along av.

(b) The wavelength X = 188.5 m.
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REVIEW QUESTIONS '% 465

(c) The wave amplitude is 10 V/m.

(d) The wave number k = 0.33 rad/m.

(e) The wave attenuates as it travels.

10.5 Given that H = 0.5 e
rect?

sin (106? - 2x) a, A/m, which of these statements are incor-

(a) a = 0.1 Np/m

- (b) 0 = - 2 rad/m

(c) co = 106rad/s

(d) The wave travels along ax.

(e) The wave is polarized in the z-direction.

. (f) The period of the wave is 1 /ts.

10.6 What is the major factor for determining whether a medium is free space, lossless di-
electric, lossy dielectric, or good conductor?

(a) Attenuation constant

(b) Constitutive parameters (a, e, f£)

(c) Loss tangent

(d) Reflection coefficient

10.7 In a certain medium, E = 10 cos (108r — 3y) ax V/m. What type of medium is it?

(a) Free space

(b) Perfect dielectric

(c) Lossless dielectric

(d) Perfect conductor

10.8 Electromagnetic waves travel faster in conductors than in dielectrics.

(a) True

(b) False

10.9 In a good conductor, E and H are in time phase.

(a) True

— y (b) False

10.10 The Poynting vector physically denotes the power density leaving or entering a given
volume in a time-varying field.

— ^ (a) True

(b) False

Answers: 10.1b, 10.2d,f, 10.3a, 10.4b,c, 10.5b,f, 10.6c, 10.7c, 10.8b, 10.9b, 10.10a.
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466 Electromagnetic Wave Propagation

PROBLEMS
10.1 An EM wave propagating in a certain medium is described by

E = 25 sin (2TT X 106f ™ 6x) a, V/m

(a) Determine the direction of wave propagation.

(b) Compute the period T, the wavelength X, and the velocity u.

(c) Sketch the wave at t = 0, 778, 774, 772.

10.2 (a) Derive eqs. (10.23) and (10.24) from eqs. (10.18) and (10.20).

(b) Using eq. (10.29) in conjunction with Maxwell's equations, show that

V =
y

(c) From part (b), derive eqs. (10.32) and (10.33).

10.3 At 50 MHz, a lossy dielectric material is characterized by e = 3.6e0, p = 2.1/to, and
a = 0.08 S/m. If E, = 6e~yx az V/m, compute: (a) y, (b) X, (c) u, (d) r/, (e) H,.

10.4 A lossy material has /x = 5fio, e = 2eo. If at 5 MHz, the phase constant is 10 rad/m, cal-
culate

(a) The loss tangent

(b) The conductivity of the material

(c) The complex permittivity

(d) The attenuation constant

(e) The intrinsic impedance

*10.5 A nonmagnetic medium has an intrinsic impedance 240 /30° 0. Find its

(a) Loss tangent

(b) Dielectric constant

(c) Complex permittivity

(d) Attenuation constant at 1 MHz

10.6 The amplitude of a wave traveling through a lossy nonmagnetic medium reduces by
18% every meter. If the wave operates at 10 MHz and the electric field leads the mag-
netic field by 24°, calculate: (a) the propagation constant, (b) the wavelength, (c) the skin
depth, (d) the conductivity of the medium.

10.7 Sea water plays a vital role in the study of submarine communications. Assuming that
for sea water, a = 4 S/m, sr = 80, \xr = 1, and / = 100 MHz, calculate: (a) the phase
velocity, (b) the wavelength, (c) the skin depth, (d) the intrinsic impedance.

10.8 In a certain medium with /x = /xo, e = 4e0,

H = \2e~0Ay sin (ir X 108/ - fiy) ax A/m

find: (a) the wave period T, (b) the wavelength X, (c) the electric field E, (d) the phase
difference between E and H.
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PROBLEMS 467

10.9 In a medium,

E = 16e"005x sin (2 X 10st - 2x) az V/m

find: (a) the propagation constant, (b) the wavelength, (c) the speed of the wave, (d) the
skin depth.

10.10 A uniform wave in air has

E = 10COS(2TT X 106f- 0z)av

(a) Calculate /3 and X.

(b) Sketch the wave at z = 0, A/4.

(c) FindH.

10.11 The magnetic field component of an EM wave propagating through a nonmagnetic
medium (p, = /xo) is

H = 25 sin (2 X 108? + 6x) ay mA/m

Determine:

(a) The direction of wave propagation.

(b) The permittivity of the medium.

(c) The electric field intensity.

10.12 If H = 10 sin (oof — 4z)ax mA/m in a material for which a = 0, ix = /xo, e = 4eo, cal-
culate u, X, and Jd.

10.13 A manufacturer produces a ferrite material with JX = 750/xo, e = 5eo, and a =
l (T 6 S/ma t l0MHz.

(a) Would you classify the material as lossless, lossy, or conducting?

(b) Calculate j3 and X.

(c) Determine the phase difference between two points separated by 2 m.

(d) Find the intrinsic impedance.

*10.14 By assuming the time-dependent fields E = E o e i ( k r "" ( ) and H = Hoe-/(k'r~*") where
k = kxax + ky&y + k-az is the wave number vector and r = xax + ya^ + zaz is the
radius vector, show that V X E = — dB/df can be expressed as k X E = /̂ wH and
deduce ak X aE = aH.

10.15 Assume the same fields as in Problem 10.14 and show that Maxwell's equations in a
source-free region can be written as

k - E = 0

k H = 0

k X E = wftH

k X H = -coeE
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468 Electromagnetic Wave Propagation

From these equations deduce

&k X a£ = and ak X aw = —

10.16 The magnetic field component of a plane wave in a lossless dielectric [is

H = 30 sin (2-ir X 108f - 5*) az mA/m

(a) If> r = l.finde,..

(b) Calculate the wavelength and wave velocity.

(c) Determine the wave impedance.

(d) Determine the polarization of the wave.

(e) Find the corresponding electric field component.

(f) Find the displacement current density.

10.17 In a nonmagnetic medium,

E = 50 cos (109f - 8JC) ay + 40 sin (109f - 8x) az V/m

find the dielectric constant er and the corresponding H.

10.18 In a certain medium

E = 10 cos (2TT X 107r - Px)(ay + az) V/m

If ix = 50/*o, e = 2e0, and a = 0, find (3 and H.

10.19 Which of the following media may be treated as conducting at 8 MHz?

(a) Wet marshy soil (e = 15eo, /x = /xo, a = 10~2 S/m)

(b) Intrinsic germanium (e = 16e0, p = JXO, a = 0.025 S/m)

(c) Sea water (e = 81eo, ji = ixo, a = 25 S/m)

10.20 Calculate the skin depth and the velocity of propagation for a uniform plane wave at fre-
quency 6 MHz traveling in polyvinylchloride {p.r — 1, er = 4, tan 8V = 1 X 10~2).

10.21 A uniform plane wave in a lossy medium has a phase constant of 1.6 rad/m at 107 Hz and
its magnitude is reduced by 60% for every 2 m traveled. Find the skin depth and speed of
the wave.

10.22 (a) Determine the dc resistance of a round copper wire (a = 5.8 X 107 S/m,

jxr = 1, er = 1) of radius 1.2 mm and length 600 m.

(b) Find the ac resistance at 100 MHz.

(c) Calculate the approximate frequency where dc and ac resistances are equal.

10.23 A 40-m-long aluminum (a = 3.5 X 107 S/m, fir = 1, e r = 1) pipe with inner and
outer radii 9 mm and 12 mm carries a total current of 6 sin 106 irf A. Find the skin depth
and the effective resistance of the pipe.

10.24 Show that in a good conductor, the skin depth 8 is always much shorter than the wave-
length.

Ke
rn

el
 fo

r P
DF 

Sp
lit 

& 
M

er
ge

 D
em

o



PROBLEMS 469

10.25 Brass waveguides are often silver plated to reduce losses. If at least the thickness of
silver (/* = /xo, e = eo, a = 6.1 X 107 S/m) must be 55, find the minimum thickness
required for a waveguide operating at 12 GHz.

10.26 A uniform plane wave in a lossy nonmagnetic media has

E s = (5ax + 12ay)e~7Z, y = 0.2 + /3.4/m

(a) Compute the magnitude of the wave at z = 4 m.

(b) Find the loss in dB suffered by the wave in the interval 0 < z < 3 m.

(c) Calculate the Poynting vector at z = 4, t = 778. Take co = 108 rad/s.

10.27 In a nonmagnetic material,

H = 30 cos (2TT X 108f - 6x) a, mA/m

find: (a) the intrinsic impedance, (b) the Poynting vector, (c) the time-average power
crossing the surface x = 1,0 < y < 2, 0 < z < 3 m.

*10.28 Show that eqs. (10.67) and (10.68) are equivalent.

10.29 In a transmission line filled with a lossless dielectric (e = 4.5eo, fx = ix0),

E =
40

sin (ut - 2z) ap V/m

10.30

find: (a) co and H, (b) the Poynting vector, (c) the total time-average power crossing the
surface z = 1 m, 2 mm < p < 3 mm, 0 < <j> < 2TT.

(a) For a normal incidence upon the dielectric-dielectric interface for which
Mi = M2 = î cn w e define R and Tas the reflection and transmission coefficients for
average powers, i.e., Pr>avc = /?/>,>ve and Pume = TPiawe. Prove that

R = "l ~ "2

"I + «2
and T =

where M, and n2 are the reflective indices of the media.

(b) Determine the ratio iii/n2 so that the reflected and the transmitted waves have the

same average power.

10.31 The plane wave E = 30 cos(w? — z)ax V/m in air normally hits a lossless medium
(p, = no, e = 4eo) at z = 0. (a) Find F, r, and s. (b) Calculate the reflected electric and
magnetic fields.

10.32 A uniform plane wave in air with

H = 4 sin (wf — 5x) ay A/m

is normally incident on a plastic region with the parameters/x = fto, e = 4e0, andff = 0.
(a) Obtain the total electric field in air. (b) Calculate the time-average power density in the
plastic region, (c) Find the standing wave ratio.
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470 Electromagnetic Wave Propagation

10.33 A plane wave in free space with E = 3.6 cos (ut — 3x) ay V/m is incident normally on
an interface at x = 0. If a lossless medium with a = 0, er = 12.5 exits for x & 0 and
the reflected wave has H r = —1.2 cos (ut + 3x) a- mA/m, find \x2.

10.34 Region 1 is a lossless medium for which y s 0, \x = /*„, e = 4eo, whereas region 2 is
free space, y < 0. If a plane wave E = 5 cos (108/ + /3y) a, V/m exists in region 1,
find: (a) the total electric field component of the wave in region 2, (b) the time-average
Poynting vector in region 1, (c) the time-average Poynting vector in region 2.

10.35 A plane wave in free space (z £ 0) is incident normally on a large block of material with
er = 12, \xr = 3, a = 0 which occupies z > 0. If the incident electric field is

E = 30 cos (ut - z) ay V/m

find: (a) u, (b) the standing wave ratio, (c) the reflected magnetic field, (d) the average
power density of the transmitted wave.

10.36 A 30-MHz uniform plane wave with

H = 10 sin (ut + fix) az mA/m

exists in region x > 0 having a = 0, e = 9eo, p = 4/io. At x = 0, the wave encounters
free space. Determine (a) the polarization of the wave, (b) the phase constant (3, (c) the
displacement current density in region x > 0, (d) the reflected and transmitted magnetic
fields, and (e) the average power density in each region.

10.37 A uniform plane wave in air is normally incident on an infinite lossless dielectric mater-
ial having e = 3eo and /x = /xo. If the incident wave is E, = 10 cos (ut — z) av V/m.
find:

(a) X and u of the wave in air and the transmitted wave in the dielectric medium

(b) The incident H, field

(c) Tandr

(d) The total electric field and the time-average power in both regions

*10.38 A signal in air (z S: 0) with the electric field component

E = 10 sin (ut + 3z) ax V/m

hits normally the ocean surface at z = 0 as in Figure 10.19. Assuming that the ocean
surface is smooth and that s = 80eo, \x = /io, a = 4 mhos/m in ocean, determine

(a) co

(b) The wavelength of the signal in air

(c) The loss tangent and intrinsic impedance of the ocean

(d) The reflected and transmitted E field

10.39 Sketch the standing wave in eq. (10.87) at t = 0, 7/8, 774, 37/8, 772, and so on, where
T = 2itlu.
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Figure 10.19 For Problem 10.38.

ocean

S = 80£ o , |U. = flo, (T = 4

10.40 A uniform plane wave is incident at an angle 0, = 45° on a pair of dielectric slabs joined
together as shown in Figure 10.20. Determine the angles of transmission 0t] and 6,2 in the
slabs.

10.41 Show that the field

E.v = 20 sin (kj) cos (kyy) az

10.42

where k2
x + k\ = aj2/ioeo, can be represented as the superposition of four propagating

plane waves. Find the corresponding H,.

Show that for nonmagnetic dielectric media, the reflection and transmission coefficients
for oblique incidence become

2 cos 0; sin 0,

r, =-

tan
tan

sin

(0r~

(0,4-

(0,-

»,)

sin (fit + 0,)'

sin (0, 4- 0;) cos (0, - 0,)

2 cos 6i sin 6,

sin (0, 4- 0,)

*10.43 A parallel-polarized wave in air with

E = (8a,. - 6a,) sin (cot - Ay - 3z) V/m

impinges a dielectric half-space as shown in Figure 10.21. Find: (a) the incidence angle
0,, (b) the time average in air (/t = pt0, e = e0), (c) the reflected and transmitted E
fields.

free space free space
Figure 10.2(1 For Problem 10.40.
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472 Electromagnetic Wave Propagation

Figure 10.21 For Problem 10.43.

Air

(E = s0 , M- = i ( E = - 4 K , ,

10.44 In a dielectric medium (e = 9eo, n = M o) , a plane wave with

H = 0.2 cos (109f -lex- ay A/m

is incident on an air boundary at z = 0, find

(a) 0 rand0,

(b) k

(c) The wavelength in the dielectric and air

(d) The incident E

(e) The transmitted and reflected E

(f) The Brewster angle

* 10.45 A plane wave in air with

E = (8ax + 6a,. + 5aj) sin (wt + 3x - Ay) V/m

is incident on a copper slab in y > 0. Find u and the reflected wave. Assume copper is a
perfect conductor. (Hint: Write down the field components in both media and match the
boundary conditions.)

10.46 A polarized wave is incident from air to polystyrene with fx = no, e = 2.6e at Brewster
angle. Determine the transmission angle.
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Chapter 1 7

TRANSMISSION LINES

There is a story about four men named Everybody, Somebody, Anybody, and

Nobody. There was an important job to be done, and Everybody was asked to do

it. Everybody was sure that Somebody would do it. Anybody could have done it,

but Nobody did it. Somebody got angry about that, because it was Everybody's

job. Everybody thought that Anybody could do it, and Nobody realized that

Everybody wouldn't do it. It ended up that Everybody blamed Somebody, when

actually Nobody did what Anybody could have done.

—ANONYMOUS

1.1 INTRODUCTION

Our discussion in the previous chapter was essentially on wave propagation in unbounded
media, media of infinite extent. Such wave propagation is said to be unguided in that the
uniform plane wave exists throughout all space and EM energy associated with the wave
spreads over a wide area. Wave propagation in unbounded media is used in radio or TV
broadcasting, where the information being transmitted is meant for everyone who may be
interested. Such means of wave propagation will not help in a situation like telephone con-
versation, where the information is received privately by one person.

Another means of transmitting power or information is by guided structures. Guided
structures serve to guide (or direct) the propagation of energy from the source to the load.
Typical examples of such structures are transmission lines and waveguides. Waveguides
are discussed in the next chapter; transmission lines are considered in this chapter.

Transmission lines are commonly used in power distribution (at low frequencies) and
in communications (at high frequencies). Various kinds of transmission lines such as the
twisted-pair and coaxial cables (thinnet and thicknet) are used in computer networks such
as the Ethernet and internet.

A transmission line basically consists of two or more parallel conductors used to
connect a source to a load. The source may be a hydroelectric generator, a transmitter, or an
oscillator; the load may be a factory, an antenna, or an oscilloscope, respectively. Typical
transmission lines include coaxial cable, a two-wire line, a parallel-plate or planar line, a
wire above the conducting plane, and a microstrip line. These lines are portrayed in Figure
11.1. Notice that each of these lines consists of two conductors in parallel. Coaxial cables are
routinely used in electrical laboratories and in connecting TV sets to TV antennas. Mi-
crostrip lines (similar to that in Figure 11. le) are particularly important in integrated circuits
where metallic strips connecting electronic elements are deposited on dielectric substrates.

Transmission line problems are usually solved using EM field theory and electric
circuit theory, the two major theories on which electrical engineering is based. In this

473
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474 Transmission Lines

(e)

Figure 11.1 Cross-sectional view of typical transmission lines: (a) coaxial line, (b) two-wire line,
(c) planar line, (d) wire above conducting plane, (e) microstrip line.

chapter, we use circuit theory because it is easier to deal with mathematically. The basic
concepts of wave propagation (such as propagation constant, reflection coefficient, and
standing wave ratio) covered in the previous chapter apply here.

Our analysis of transmission lines will include the derivation of the transmission-line
equations and characteristic quantities, the use of the Smith chart, various practical appli-
cations of transmission lines, and transients on transmission lines.

11.2 TRANSMISSION LINE PARAMETERS

It is customary and convenient to describe a transmission line in terms of its line parame-
ters, which are its resistance per unit length R, inductance per unit length L, conductance
per unit length G, and capacitance per unit length C. Each of the lines shown in Figure 11.1
has specific formulas for finding R, L, G, and C. For coaxial, two-wire, and planar lines, the
formulas for calculating the values of R, L, G, and C are provided in Table 11.1 The di-
mensions of the lines are as shown in Figure 11.2. Some of the formulas1 in Table 11.1
were derived in Chapters 6 and 8. It should be noted that

1. The line parameters R, L, G, and C are not discrete or lumped but distributed as
shown in Figure 11.3. By this we mean that the parameters are uniformly distrib-
uted along the entire length of the line.

'Similar formulas for other transmission lines can be obtained from engineering handbooks or data
books—e.g., M. A. R. Guston, Microwave Transmission-line Impedance Data. London: Van Nos-
trand Reinhold, 1972.
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. 11.2 TRANSMISSION LINE PARAMETERS

TABLE 11.1 Distributed Line Parameters at High Frequencies*

475

Parameters

R (fl/m)

L(H/m)

G (S/m)

C (F/m)

Coaxial Line Two-Wire Line

2x8(7,. La />
(6 «C a, c - b)

V. b
— l n -
2ir a

i n 6

a

2TTE

h ^

(8 a)

/i , d
— cosh —
•7T 2a

cosh- -
2a

cosh"1—
2a

Planar Line

w8oe

(8 « 0

w

ow

~d

BW

d
(w » aO

*6 = — j = = skin depth of the conductor; cosh ' — = In — if —
\Ar/"n n 2a a I 2a

2. For each line, the conductors are characterized by ac, /*c, ec = eo, and the homoge-
neous dielectric separating the conductors is characterized by a, fi, e.

3. G + MR; R is the ac resistance per unit length of the conductors comprising the line
and G is the conductance per unit length due to the dielectric medium separating
the conductors.

4. The value of L shown in Table 11.1 is the external inductance per unit length; that
is, L = Lext. The effects of internal inductance Lm (= Rlui) are negligible as high
frequencies at which most communication systems operate.

5. For each line,

G a
LC = /lie and —; = —

C £
(H.l)

As a way of preparing for the next section, let us consider how an EM wave propagates
through a two-conductor transmission line. For example, consider the coaxial line connect-
ing the generator or source to the load as in Figure 11.4(a). When switch S is closed,

Figure 11.2 Common transmission lines: (a) coaxial line, (b) two-wire
line, (c) planar line.
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476 Transmission Lines

series R and L

shunt G and C

Figure 11.3 Distributed parameters of a two-conductor transmission line.

the inner conductor is made positive with respect to the outer one so that the E field is ra-
dially outward as in Figure 11.4(b). According to Ampere's law, the H field encircles the
current carrying conductor as in Figure 11.4(b). The Poynting vector (E X H) points along
the transmission line. Thus, closing the switch simply establishes a disturbance, which
appears as a transverse electromagnetic (TEM) wave propagating along the line. This
wave is a nonuniform plane wave and by means of it power is transmitted through the line.

I—WV • •
S I

generator — coaxial line-

(a)

r
-»-| load

• E field

H field

(b)

Figure 11.4 (a) Coaxial line connecting the generator to the load;
(b) E and H fields on the coaxial line.
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11.3 TRANSMISSION LINE EQUATIONS 477

11.3 TRANSMISSION LINE EQUATIONS

As mentioned in the previous section, a two-conductor transmission line supports a TEM
wave; that is, the electric and magnetic fields on the line are transverse to the direction of
wave propagation. An important property of TEM waves is that the fields E and H are
uniquely related to voltage V and current /, respectively:

(11.2)V = - E • d\, I = <p H • d\

In view of this, we will use circuit quantities V and / in solving the transmission line
problem instead of solving field quantities E and H (i.e., solving Maxwell's equations and
boundary conditions). The circuit model is simpler and more convenient.

Let us examine an incremental portion of length Az of a two-conductor transmission
line. We intend to find an equivalent circuit for this line and derive the line equations.
From Figure 11.3, we expect the equivalent circuit of a portion of the line to be as in
Figure 11.5. The model in Figure 11.5 is in terms of the line parameters R, L, G, and C,
and may represent any of the two-conductor lines of Figure 11.3. The model is called the
L-type equivalent circuit; there are other possible types (see Problem 11.1). In the model
of Figure 11.5, we assume that the wave propagates along the +z-direction, from the gen-
erator to the load.

By applying Kirchhoff's voltage law to the outer loop of the circuit in Figure 11.5, we
obtain

V(z, t)=RAz I(z, t) + L Az
dt

+ V(z + Az, t)

or

V(z + Az, t) - V(z, t)

Az
= RI{z,t) + L

dl(z, t)
dt

(11.3)

I(z,t)
•y — A / W

To generator

V(z, t)

-+ - ••— — o

V(z + Az, t)
To load

GAz • : CAz

r
z z + Az

Figure 11.5 L-type equivalent circuit model of a differential length
Az of a two-conductor transmission line.

Ke
rn

el
 fo

r P
DF 

Sp
lit 

& 
M

er
ge

 D
em

o



478 Transmission Lines

Taking the limit of eq. (11.3) as Az -> 0 leads to

dt
(11.4)

Similarly, applying Kirchoff's current law to the main node of the circuit in Figure 11.5
gives

I(z, t) = I(z + Az, t) + A/

= I(z + Az, t) + GAz V(z + Az, t) + C Az -
dV(z + Az,t)

or

As A^ —> 0, eq. (11.5) becomes

dt

dt
(11.5)

at
(11.6)

If we assume harmonic time dependence so that

V(z, t) = Re [Vs(z) eJu"]

I(z, t) = Re [Is(z) eJ"'] (11.7b)

where Vs(z) and Is(z) are the phasor forms of V(z, i) and I(z, t), respectively, eqs. (11.4) and
(11.6) become

_dV^
) dz

dz

In the differential eqs. (11.8) and (11.9), Vs and Is are coupled. To separate them, we take
the second derivative of Vs in eq. (11.8) and employ eq. (11.9) so that we obtain

= (R + juL) I3

uQ Vs

dz
juL)(.G + jo>Q Vs

or

dz
(ll.lOi
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11.3 TRANSMISSION LINE EQUATIONS 479

where

| 7 = a + jf3 = V(R + juL)(G + ju (11.11)

By taking the second derivative of Is in eq. (11.9) and employing eq. (11.8), we get

(11.12)

We notice that eqs. (11.10) and (11.12) are, respectively, the wave equations for voltage
and current similar in form to the wave equations obtained for plane waves in eqs. (10.17)
and (10.19). Thus, in our usual notations, y in eq. (11.11) is the propagation constant (in
per meter), a is the attenuation constant (in nepers per meter or decibels2 per meter), and (3
is the phase constant (in radians per meter). The wavelength X and wave velocity u are, re-
spectively, given by

X =
2ir

(11.13)

,—fK (11.14)

The solutions of the linear homogeneous differential equations (11.10) and (11.12) are
similar to Case 2 of Example 6.5, namely,

Vs(z) =
(11.15)

and

(11.16)

where Vg, Vo, 7tt, and Io are wave amplitudes; the + and — signs, respectively, denote
wave traveling along +z- and -z-directions, as is also indicated by the arrows. Thus, we
obtain the instantaneous expression for voltage as

V(z, t) = Re [Vs(z) eM]
= V+ e'az cos (oit - fa) + V~ eaz cos {at + /3z) (11.17)

The characteristic impedance Zo of the line is the ratio of positively traveling
voltage wave to current wave at any point on the line.

2Recall from eq. (10.35) that 1 Np = 8.686 dB.
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480 Transmission Lines

Zo is analogous to 77, the intrinsic impedance of the medium of wave propagation. By sub-
stituting eqs. (11.15) and (11.16) into eqs. (11.8) and (11.9) and equating coefficients of
terms eyz and e~lz, we obtain

V R + jo)L

1
(11.18)

or

R + juL
= Ro+jXo I (11.19)

where Ro and Xo are the real and imaginary parts of Zo. Ro should not be mistaken for R—
while R is in ohms per meter; Ro is in ohms. The propagation constant y and the character-
istic impedance Zo are important properties of the line because they both depend on the line
parameters R, L, G, and C and the frequency of operation. The reciprocal of Zo is the char-
acteristic admittance Yo, that is, Yo = 1/ZO.

The transmission line considered thus far in this section is the lossy type in that the
conductors comprising the line are imperfect (ac =£ °°) and the dielectric in which the con-
ductors are embedded is lossy (a # 0). Having considered this general case, we may now
consider two special cases of lossless transmission line and distortionless line.

A. Lossless Line (R = 0 = G)

A transmission line is said lo be lossless if the conductors of the line are perfect
(<rt. ~ oc) and the dielectric medium separating them is lossless (a — 0).

For such a line, it is evident from Table 11.1 that when ac — °° and a — 0.

' i R = 0 = G (11.2

This is a necessary condition for a line to be lossless. Thus for such a line, eq. (11.201
forces eqs. (11.11), (11.14), and (11.19) to become

a = 0, 7 = 7 / 3 = ju VLC

- W - 1

~P VLC

(11.21a.

(11.21b.

(11.21c
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11.3 TRANSMISSION LINE EQUATIONS

B. Distortionless Line {R/L = G/C)

481

A signal normally consists of a band of frequencies; wave amplitudes of different fre-
quency components will be attenuated differently in a lossy line as a is frequency depen-
dent. This results in distortion.

A distortionless line is one in which the attenuation constant a is frequency inde-
pendent while the phase constant /i is linearly dependent on frequency.

From the general expression for a and /3 [in eq. (11.11)], a distortionless line results if the
line parameters are such that

\ R _G \

\~L~~C \
(11.22)

Thus, for a distortionless line,

or

a = VRG, (3 = u (11.23a)

showing that a does not depend on frequency whereas 0 is a linear function of frequency.
Also

_ R_ L_
~^G VC K° JX°

or

and

(11.23b)

u = — =0 VLC

Note that

(11.23c)

1. The phase velocity is independent of frequency because the phase constant /? lin-
early depends on frequency. We have shape distortion of signals unless a and u are
independent of frequency.

2. u and Zo remain the same as for lossless lines.
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482 Transmission Lines

TABLE 11.2 Transmission Line Characteristics

Propagation Constant Characteristic Impedance
Case 7 = a + yp Zo = Ro + jXo

General V(R + jo)L)(G + jui

Lossless 0 + jcovLC

Distortionless VSG + joivLC

3. A lossless line is also a distortionless line, but a distortionless line is not necessar-
ily lossless. Although lossless lines are desirable in power transmission, telephone
lines are required to be distortionless.

A summary of our discussion is in Table 11.2. For the greater part of our analysis, we
shall restrict our discussion to lossless transmission lines.

EXAMPLE 11.1
An air line has characteristic impedance of 70 fi and phase constant of 3 rad/m at
100 MHz. Calculate the inductance per meter and the capacitance per meter of the line.

Solution:

An air line can be regarded as a lossless line since a — 0. Hence

R = 0 = G and a = 0

13 = LC

Dividing eq. (11.1.1) by eq. (11.1.2) yields

or

(11.1.1)

(11.1.2)

c =
0 2ir X 100 X 106(70)

= 68.2 pF/m

From eq. (11.1.1),

= R2
OC = (70)2(68.2 X 10~12) = 334.2 nH/m
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11.3 TRANSMISSION LINE EQUATIONS < 483

PRACTICE EXERCISE 11.1

A transmission line operating at 500 MHz has Zo = 80 0, a = 0.04 Np/m, /3
1.5 rad/m. Find the line parameters R, L, G, and C.

Answer: 3.2 0/m, 38.2 nH/m, 5 X 10"4 S/m, 5.97 pF/m.

XAMPLE 11.2
A distortionless line has Zo = 60 fl, a = 20 mNp/m, u = 0.6c, where c is the speed of light
in a vacuum. Find R, L, G, C, and X at 100 MHz.

Solution:

For a distortionless line,

RC= GL or G =
RC

and hence

= VRG = R
L Zo

CO 1

or

But

LC

From eq. (11.2.2b),

R = a Zo = (20 X 10~3)(60) = 1.2 fi/m

Dividing eq. (11.2.1) by eq. (11.2.3) results in

L = A. = w = 333 j j j j ^

M 0.6 (3 X 108)

From eq. (11.2.2a),

\ ce2 400 X IP ' 6

G = — = = 333 uS/m
fl 1.2 ^

(11.2.1)

(11.2.2a)

(11.2.2b)

(11.2.3)
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484 Transmission Lines

Multiplying eqs. (11.2.1) and (11.2.3) together gives

or

C = 1 1
uZ0 0.6 (3 X 108) 60

= 92.59 pF/m

u 0.6 (3 X 10s)
A = — = z = l.o m

/ 108

PRACTICE EXERCISE 11.2

A telephone line has R = 30 0/km, L = 100 mH/km, G = 0, and C = 20 jtF/km. At
/ = 1 kHz, obtain:

(a) The characteristic impedance of the line

(b) The propagation constant

(c) The phase velocity

Answer: (a) 70.75/-1.367° Q, (b) 2.121 X 10~4 + 78.888 X 10"3/m, (c) 7.069 X
105 m/s.

11.4 INPUT IMPEDANCE, SWR, AND POWER

Consider a transmission line of length €, characterized by y and Zo, connected to a load ZL

as shown in Figure 11.6. Looking into the line, the generator sees the line with the load as
an input impedance Zin. It is our intention in this section to determine the input impedance,
the standing wave ratio (SWR), and the power flow on the line.

Let the transmission line extend from z = 0 at the generator to z = € at the load. First
of all, we need the voltage and current waves in eqs. (11.15) and (11.16), that is

ys(z) = y^e~TZ + V~eyz (H-24)

V+ V
Is(z) = —e TZ eyz (11.25)

where eq. (11.18) has been incorporated. To find V* and V~, the terminal conditions must
be given. For example, if we are given the conditions at the input, say

Vo = V(Z = 0), /„ = I(z = 0) (11.26)
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11.4 INPUT IMPEDANCE, SWR, AND POWER 485

(y, z0) zL

+

FISJUIT U.6 (a) Input impedance due to a line terminated by a
load; (b) equivalent circuit for finding Vo and Io in terms of Zm at
the input.

substituting these into eqs. (11.24) and (11.25) results in

V + = ^ ( V +ZJ)
V O ~ V v O ' ^ 0 * 0 /

V-=\{NO-ZJO)

(11.27a)

(11.27b)

If the input impedance at the input terminals is Zin, the input voltage Vo and the input
current Io are easily obtained from Figure 11.6(b) as

°

On the other hand, if we are given the conditions at the load, say

VL = V(z = €), /L = I(z = €)

Substituting these into eqs. (11.24) and (11.25) gives

-{VL

(11.28)

(11.29)

(11.30a)

(11.30b)
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486 Transmission Lines

Next, we determine the input impedance Zin = Vs(z)/Is(z) at any point on the line. At
the generator, for example, eqs. (11.24) and (11.25) yield

Vs(z) (11.31)

Substituting eq. (11.30) into (11.31) and utilizing the fact that

= cosh y£,
yt —/(

eJ - e y
= sinh y( (11.32a)

or

we get

tanh-y€ =
sinh yi e7

cosh y( e7

7 = 7
ZL + Zo tanh yt
Zo + ZL tanh yi

(lossy)

(11.32b)

(11.33)

Although eq. (11.33) has been derived for the input impedance Zin at the generation end, it
is a general expression for finding Zin at any point on the line. To find Zin at a distance V
from the load as in Figure 11.6(a), we replace t by €'. A formula for calculating the hyper-
bolic tangent of a complex number, required in eq. (11.33), is found in Appendix A.3.

For a lossless line, y = j/3, tanh//3€ = j tan /?€, and Zo = Ro, so eq. (11.33) becomes

ZL + jZ0 tan

Zo + jZL tan j
(lossless) (11.34)

showing that the input impedance varies periodically with distance € from the load. The
quantity /3€ in eq. (11.34) is usually referred to as the electrical length of the line and can
be expressed in degrees or radians.

We now define TL as the voltage reflection coefficient (at the load). TL is the ratio of
the voltage reflection wave to the incident wave at the load, that is,

V
(11.35)

Substituting V~ and VQ m eq. (11.30) into eq. (11.35) and incorporating VL = ZJL gives

zL-zo

zL + zo
(11.361
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